
Copyright

by

Aashaka Shah

2023

The Dissertation Committee for Aashaka Shah
certifies that this is the approved version of the following dissertation:

Optimizing ML Systems without using experts

Committee:

Vijay Chidambaram, Supervisor

Philipp Krähenbühl

James Bornholt

Madan Musuvathi

Optimizing ML Systems without using experts

by

Aashaka Shah

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

August 2023

Dedication

To my family, thank you for your love and support.

Acknowledgments

First and foremost, I would like to thank my Ph.D. advisor Vijay Chidambaram.

I was a scared first-year Ph.D. student straight out of undergrad with little research

experience when I joined UT. Under Vijay’s guidance and mentorship, I can say that

now I am a more confident early-career researcher with a stronger handle on how

to conduct research. ML Systems was as much of a new research area for Vijay as

it was for me. I am truly grateful to him for being open to exploring the field and

learning it along with me. His ability to identify impeccable insights and ask the

correct pain-point questions in a completely different field of research put me in awe

every time. Vijay always stressed the importance of communicating your work well,

and taking a step back and understanding the high-level picture. Some of the best

opportunities I have received till now for my academic career have only been possible

because of following his advice. The COVID-19 pandemic hit right in the middle

of my Ph.D. Vijay was the kindest, most supportive, and most empathetic advisor

during this time. Thank you for believing in me.

I would also like to deeply thank Philipp Krähenbühl for his invaluable men-

torship and collaboration throughout the majority of my Ph.D. Working with Philipp

was extremely enjoyable and I always left meetings feeling more motivated than be-

fore. His advice on making presentations and writing research papers has greatly

helped me refine the style of presenting my work. He also taught me the importance

of believing in one’s own work, which is a lesson I intend to uphold continually. I am

grateful to have had the opportunity to collaborate with him.

I would also like to thank the other members of my committee James Bornholt

and Madan Musuvathi for their insightful comments and feedback which has helped

make this dissertation stronger.

The second part of this dissertation was work that was started during an

internship at Microsoft Research. I would like to thank all my collaborators at MSR

v

Redmond - Saeed Maleki, Todd Mytkowicz, Madan Musuvathi, Olli Saarikivi, Rachee

Singh, Meghan Cowan, and Jacob Nelson - for giving me the opportunity to work

on this topic and for their guidance during and after the internship. Specifically, I

would like to thank Saeed for all his help in running experiments, even if it often

meant going out of his way, as well as for his constant enthusiasm for the project. I

would also like to thank Todd for motivating me to go one step forward when I felt

that I had hit a dead-end. I am profoundly thankful to Madan for being a steadfast

champion of my work during the internship and when I was on the job market. I

would also like to thank Rachee for her help in presenting TACCL to the broader

audience. I would like to thank Olli for the interesting discussions on the encodings,

Meghan for drawing an analogy of our work to program sketching, and Jacob for

helping me understand some of the nuances of networking.

I also did an internship in Meta AI and would like to thank my collaborators

there - Min Si, Pavan Balaji, Ching-Hsiang Chu, Xing Liu, and Ke Wen for all the

interesting technical discussions. I would especially like to thank Min for providing

amazing career advice and being as much of a mentor as a manager during the

internship and even afterward.

My interest in systems research started with an internship with Subrata Mitra

in Adobe Research India during my undergrad. I am extremely thankful to him

for introducing me to this field. I would also like to thank my other collaborators

- Chao-Yuan Wu, Melissa Wasserman, Vinay Banakar, Supreeth Shastri, Jayashree

Mohan, and Soujanya Ponnapalli, and my MSR India internship manager, Satya

Lokam. I learned a lot from you all. I would also like to thank the Graduate Student

Committee Representative, Greg Plaxton, for always coming through on signing forms

before deadlines.

I am extremely grateful to have had amazing labmates in the UTSaSLab.

Rohan and Soujanya, thank you for often giving me company close to deadlines and

helping me improve my work. I will miss our conversations of providing constructive

vi

critical feedback for work and talking about everything under the sun. Rohan, thanks

for always making situations feel so much easier than how they felt in my head.

Soujanya, thanks for laughing the hardest at my jokes, no matter how poor they

were. You were the best roommate I could have ever hoped for. Sekwon, thanks for

helping me boot up servers when I was working remotely and for your company in the

lab when no one else was around. Jayashree, you are an inspiration for how organized

someone can be. Shagha, Supreeth, Aastha, Hayley, and Yeonju, I will miss all the

interesting conversations we had when hanging out.

I am also lucky to have had an amazing set of friends in UT - Devvrit, Ishan,

Nilesh, Kevin, Prabal, Simran, Rishabh, Ruchika, Pragnesh, Shray, Rishabh Khincha,

Yingchen, Mona, Gaurav, and so many others - who made life in Austin exciting,

and also friends outside of Austin, especially Tanvi and Janhavi, who have been my

constant cheerleaders.

I would like to thank my best friend, Jay Desai, for his unwavering support

during the ups and downs of my Ph.D. journey. This would not have been possible

without you.

Finally, I would like to thank my family. My grandparents - Dada, Dadi,

Nana, and Nani - and aunts and uncles - Fiya, Fua, Mama, and Mami - took great

pride in my achievements and inspired me to give my best to my work. Dada’s and

Nana’s work ethic is something that I will always aim to emulate. I would also like to

thank my cousins, Tanishka, Achal, and especially, Kushal, who were always available

to hang out and gave great advice about work and networking. I would also like to

thank my younger brother, Dhruvil, who made the final month before my defense so

much easier with his antics and camaraderie. Most importantly, I would like to thank

my parents, Mittal and Dhaval, for their constant love and support. This dissertation

is dedicated to you.

vii

Abstract

Optimizing ML Systems without using experts

Aashaka Shah, PhD
The University of Texas at Austin, 2023

SUPERVISOR: Vijay Chidambaram

The growth of large deep learning networks to billions and trillions of param-

eters has enabled them to achieve state-of-the-art results in various fields, includ-

ing vision, language, speech, and game-playing. This success of deep networks has

also impacted the field of databases in an interesting way - to improve performance,

database indexes are now being redesigned as learned models that fit the underlying

data. Both deep networks and learned indexes have high resource usage and strict

throughput requirements. Minor inefficiencies in resource utilization within these ma-

chine learning (ML) systems can incur heavy costs, making it important to optimize

their resource efficiency.

What makes doing this difficult is that the execution environment of ML sys-

tems is highly heterogeneous. A deep neural network is made of operators with

disparate resource utilization profiles connected in different ways. It can also be ex-

ecuted on different types of hardware accelerators, each with distinct performance

characteristics. Further, even the input workload to learned indexes can vary. For

every new neural network architecture, hardware accelerator topology, or index struc-

ture workload, either an expert would be required to hand-craft solutions for efficient

resource utilization from a large search space, or we would need to be satisfied with

a generic solution that might leave performance on the table.

viii

In this dissertation, we ask the question - Is it possible to build solutions

to optimize ML systems such that they perform instance-specific optimization under

the hood and can be utilized by non-experts?. We demonstrate how we can build

tools to optimize the execution of deep networks and learned indexes for different

use cases while minimizing manual effort. In the first part of this dissertation, we

present MONeT, an automated framework that jointly optimizes different memory-

saving techniques for any deep network architecture. Using MONeT, model training

on a single GPU always takes less memory than a user-provided memory budget

while using less compute than standalone memory-saving techniques. In the second

part of this dissertation, we present TACCL, a semi-automated tool that generates

efficient communication algorithms based on the hardware topology and size of data

to transfer in distributed deep learning. Using TACCL, network utilization can be

improved which makes distributed ML execution faster. In the third and final part of

this dissertation, we present MaPLE, a parameterized learned index that can achieve

high performance on a wide variety of workload patterns while maintaining a similar

memory footprint as another state-of-the-art learned index.

The solutions we propose in this dissertation search from a large state space

to give performant solutions for the particular use-case that match or outperform

previous state-of-the-art but do not need manual tuning from an expert.

ix

Table of Contents

List of Figures . xiii

List of Tables . xv

Chapter 1: Introduction . 1

1.1 Memory Consumption in Deep Learning 3

1.2 Network Communication in Distributed ML 5

1.3 Data Structure Configurations in Learned Indexes 7

1.4 Outline . 9

Chapter 2: Background . 10

2.1 Deep networks and deep learning training 10

2.2 Common deep network operators . 12

2.3 Distributed deep learning . 15

2.4 Characteristics of network communication in distributed ML 15

2.5 Data structures in database indexes 16

2.6 Learned Indexes and ALEX . 17

Chapter 3: Motivation . 19

3.1 Memory requirement in deep network training 19

3.2 Existing memory saving techniques 20

3.3 Hardware heterogeneity in distributed deep learning 22

3.4 Existing network communication libraries 24

3.5 Workload variety in database indexes 26

3.6 Performance of existing learned index structures 27

3.7 Summary . 28

Chapter 4: MONeT: Memory Optimization for Deep Networks 29

4.1 Goals . 29

4.2 Design . 30

4.2.1 Theoretical Analysis of Peak Memory Consumption 32

4.2.2 MONeT Formulation . 36

4.3 Detailed constraints . 39

4.3.1 In-place constraints . 39

4.3.2 Expanded backward pass memory constraints 40

4.3.3 Complete memory constraints 40

4.3.4 Constraint Linearization . 41

x

4.4 Implementation . 41

4.5 Discussion . 43

4.5.1 Adding operator optimization in other checkpointing frameworks 43

4.5.2 Applicability of MONeT to inference workloads 44

4.6 Evaluation . 45

4.6.1 Experimental Setup . 45

4.6.2 Baseline Implementations . 46

4.6.3 Constraining memory usage . 47

4.6.4 Computation overhead . 48

4.6.5 Ablation experiments . 50

4.6.6 Solver time . 51

4.6.7 ILP statistics in MONeT’s formulation 53

4.7 Summary . 53

Chapter 5: TACCL: Guiding Collective Algorithm Synthesis using Communica-
tion Sketches . 55

5.1 Goals . 55

5.2 TACCL components . 56

5.3 Physical Topologies of GPU systems 57

5.4 Design . 59

5.4.1 Communication Sketches . 60

5.4.2 Synthesizer . 64

5.5 Synthesizer Formulation . 68

5.5.1 Routing . 69

5.5.2 Ordering Heuristics . 71

5.5.3 Contiguity and Exact Scheduling 73

5.6 Backend . 75

5.6.1 TACCL runtime . 75

5.6.2 Lowering to TACCL runtime 76

5.7 Discussion . 77

5.8 Evaluation . 78

5.8.1 Experimental Setup . 79

5.8.2 Standalone Experiments . 79

5.8.3 Impact of Varying Synthesizer Inputs 84

5.8.4 End-to-End Training. 88

5.8.5 Synthesis Time . 89

5.9 Summary . 90

xi

Chapter 6: MAPLE: Parameterized Learned Index 91

6.1 Goals . 91

6.2 Data structures for learned index . 91

6.2.1 Gapped Array . 92

6.2.2 Fragmented Log . 94

6.2.3 Minimal Perfect Hash Functions (MPHF) 98

6.3 Design . 99

6.3.1 Overview . 99

6.3.2 Selecting MAPLE parameters 100

6.3.3 Throughput Prediction Model 101

6.4 Discussion . 101

6.5 Evaluation . 103

6.5.1 Experimental Setup . 103

6.5.2 Datasets and workloads . 103

6.5.3 Throughput comparison . 104

6.5.4 Memory usage . 105

6.6 Summary . 106

Chapter 7: Related Work . 107

7.1 Memory usage bottlenecks in deep network training 107

7.2 Network communication overhead in distributed deep learning 108

7.3 Workload-adaptable Index Structures 111

Chapter 8: Future Work . 114

8.1 Extension to MONeT’s formulation 114

8.2 Extension of TACCL’s communication sketches 114

8.3 Extension of MAPLE’s data structures 115

Chapter 9: Conclusion . 116

9.1 Lessons Learned . 117

9.2 Closing Remarks . 117

Appendix A: Appendix for MONeT . 119

A.1 Detailed ablations . 119

A.2 More details on solver time . 119

A.3 Applicability to memory-intensive models 121

Appendix B: Appendix for TACCL . 123

B.1 Writing a communication sketch . 123

B.2 Standalone Experiments on Four Azure NDv2 Nodes 125

References . 127

xii

List of Figures

2.1 Schematic overview of the forward pass. 11

2.2 Schematic overview of the backward pass. 12

2.3 The initial and final data buffers on four GPUs participating in differ-
ent collectives. 15

3.1 Contributions to memory usage in training deep networks. 20

3.2 NVLink connectivity of a NDv2. 22

3.3 PCIe connectivity of a NDv2. 23

3.4 NVLink connectivity of a DGX-2. 24

3.5 Comparing throughput of indexes for varying workload patterns for
the OpenStreetMaps CellIDs dataset. 26

4.1 Memory Optimized Network Training (MONeT) 30

4.2 Schematic overview of the forward and backward passes with check-
pointing . 33

4.3 Case study on ResNet-50 . 48

4.4 Comparing MONeT with PyTorch and Checkmate 49

4.5 Ablation results for memory ratio 0.53 51

5.1 TACCL workflow . 59

5.2 Multi-connection with varying number of GPU neighbors and data
volume. 61

5.3 Physical topology with a switch . 63

5.4 Connections with maximizing strategy 63

5.5 Connections with minimizing strategy 63

5.6 Allgather comparisons of NCCL to TACCL’s best algorithm at each
buffer size. 80

5.7 Alltoall comparisons of NCCL to TACCL’s best algorithm at each
buffer size. 82

5.8 Allreduce comparisons of NCCL to TACCL’s best algorithm at each
buffer size. 84

5.9 Logical topology . 85

5.10 Chunk size . 85

5.11 Data partition . 86

5.12 Switch-hyperedge strategies . 86

xiii

5.13 Runtime instances . 86

5.14 Comparison of TACCL against NCCL for Transformer-XL model . . 88

5.15 Comparison of TACCL against NCCL for BERT model 88

6.1 Performance improvements over cost model based gapped-array for
different gapped-array configurations on different datasets. 92

6.2 The Fragmented Log Data Structure. 94

6.3 Cases on inserting a key into a full fragment. 95

6.4 Insert and lookup latency for different fragmented-log configurations. 96

6.5 Overview of MAPLE workflow. 100

6.6 Performance of MAPLE as compared to ALEX on different workloads. 104

6.7 Memory usage of MAPLE as compared to ALEX on different workloads.105

A.1 Ablation results on ResNet-50, GoogleNet, UNet, VGG-16, MobileNet-
V2 . 120

A.2 Runtime-memory trade-off curve for 3D-UNet using MONeT 122

B.1 Algorithm bandwidth comparison of TACCL against NCCL for four
Azure-NDv2 nodes . 126

xiv

List of Tables

4.1 Notations used in paper with explanations 31

4.2 Memory usage comparison (in GB) for a fixed compute overhead for
Checkmate and MONeT . 48

4.3 Memory ratio and overhead (%) over PyTorch for Gist and MONeT . 49

4.4 Solver time (in hours) to reach 5% close to optimal solution 52

4.5 ILP statistics for Checkmate, MONeT-NoOp, and MONeT 53

5.1 Experimentally obtained α and β costs for Azure NDv2 and Nvidia
DGX-2 nodes. 58

5.2 Variables used in TACCL’s MILP formulation. Variables with prefix
is are binary variables and others are continuous variables. 72

5.3 Synthesis time for TACCL algorithms for different collectives using
different communication sketches. 89

A.1 Solver time (in hours) to reach 2% close to optimal solution 121

xv

Chapter 1: Introduction

Deep learning is a sub-field of machine learning that aims to learn repre-

sentations of data by training artificial neural networks with multiple layers, also

known as deep neural networks. The field of deep learning has advanced rapidly

in the past few years, achieving state-of-the-art results on popular benchmarks in

computer vision [70, 107, 51], natural language processing [34, 123, 16], and game-

playing [106, 100]. Deep networks are also being used to learn insights from data

in various other fields, such as computational physics, biomedicine, healthcare, auto-

industry, and finance. Recently introduced conversational chatbot applications like

ChatGPT [22] and Bard [12] are built over massive large language models and have

taken the power of deep networks to the general population. Deep learning has thus

become a powerful tool to further scientific progress, fuel industrial innovation, and

improve individual productivity.

This success of deep networks has largely been driven by the trend of ex-

ponentially increasing scale of deep learning infrastructure. Massive deep networks

with billions to trillions of parameters have replaced earlier deep networks that had

millions of parameters. Simultaneously, the dataset sizes used to train these large net-

works have also grown. Deep learning is inherently compute-intensive and requires

making use of expensive hardware accelerators such as GPUs, TPUs, and FPGAs.

With increasing model sizes, accelerator memory becomes a bottleneck and deep

networks need to be distributed across multiple accelerators. Apart from adding to

the monetary cost, this also introduces network communication bottlenecks between

accelerators that need to work in tandem to execute a distributed model.

Researchers and enterprises have employed fleets of expensive hardware accel-

erators in order to obtain a highly accurate model. Even with this compute power,

training could take weeks to months to finish. In industries where deep learning

models are extensively utilized, query volumes over the trained networks may range

1

from thousands to millions or even billions of requests per minute. Inference of large

networks also needs to take place on hardware accelerators in order to take advantage

of parallel compute and meet low-latency expectations. Thus, deep learning is ex-

tremely resource-intensive and bottlenecks like memory and network communication

need to be optimized for efficient resource utilization.

On the other hand, the landscape for deep learning is incredibly heteroge-

neous. Neural networks vary in the kinds of operators they use and how operators

are connected with each other. Neural networks serving different modalities, such

as images, video, or language, use different kinds of operators which have different

resource utilization characteristics. Newer hardware accelerators and network inter-

connect technologies are becoming available every few years. When added to data

centers that have previous generations of hardware, it introduces a new layer of het-

erogeneity in resource availability. Multiple techniques have been proposed over the

years for reducing memory usage for deep learning. There also exist libraries like

NCCL that are built to provide efficient implementations of communication primi-

tives for distributed deep learning. However, with the broad spectrum of execution

scenarios available, it is difficult to identify which technique or implementation would

best serve a particular case.

The success of deep networks has also impacted the field of databases in an

interesting way. An important aspect of database design is choosing a database index.

Database indexes play a major role in improving the speed of retrieving data from

a database and it is important to design them carefully. Traditionally, database

administrators have chosen general-purpose data structures like B+ Trees [14], LSM

Trees [89], and Hash Tables to store data in the form of key-value pairs. With

the advent of deep learning, database indexes are being seen in a new light - as

models that can use traditional ML techniques to learn the cumulative distribution

function (CDF) of stored data. Different learned indexes [31, 69, 36] have successfully

outperformed different traditional indexes like B+ trees and LSM-Trees for various

workloads.

2

While learned indexes can fit the distribution of the dataset, their performance

on different workloads is still constrained by their underlying data structure. For

example, for write-only workloads, learned indexes whose underlying data structures

store keys in a sorted manner will always underperform indexes with an append-

only data structure. Meanwhile, new services and applications are coming up faster

than ever and are expected to have different workload characteristics. Further, the

workload characteristics of existing applications may also change with time. For every

workload change, the index structure to be used will need to be either redesigned or

reconfigured by experts or will suffer from average-case or even poor performance.

We have discussed that there are a wide variety of neural architectures and

hardware topologies possible for deep learning workloads, which may require different

memory optimization techniques and network communication algorithms. We also

saw that database workloads can have different query workloads, which would require

differently configured index structures. The vast range of decision options presents

two distinct scenarios: achieving high performance by tailoring configurations to the

specific problem with expert guidance, or settling for average-case performance and

potentially encountering subpar results when employing a generalized solution. In this

dissertation, we seek to answer the question: is it possible to optimize ML systems

without using an expert? We first look into optimizing the memory usage and network

communication overhead of deep learning, and finally, we look into optimizing the

index structure configuration for learned indexes.

1.1 Memory Consumption in Deep Learning

Training deep networks is resource-intensive. In particular, the amount of

GPU memory bottlenecks training many deep networks [38, 64, 23, 27]. While the

tensor computation in top-of-the-line GPUs increased by 32× over the last five years,

the total available memory only grew by 2.5×. This bottleneck requires either mod-

ifying the network architecture or scaling training to multiple nodes, incurring sig-

3

nificant overheads. Different techniques exist to save memory but identifying which

techniques to use requires significant experimentation and expertise.

We present MONeT (Memory Optimized Network Training) [103], a frame-

work to automatically minimize the memory footprint for deep networks. MONeT

jointly optimizes global compute-graph-level techniques (such as checkpointing) and

local techniques (such as memory-efficient implementations of individual operator).

At the heart of MONeT is a theoretical analysis that enables joint optimization and

provides tight bounds on memory consumption. We analyze the memory consump-

tion and computational cost of a general forward and backward pass under changing

local operator implementations and a global checkpointing schedule. Specifically, we

are able to tightly bound the peak memory consumption for network forward, back-

ward, and re-computation stages. MONeT uses these constraints to optimize for the

most efficient forward and backward implementation both locally and globally under

a fixed memory budget. We linearize all memory bounds and express both imple-

mentation selection and checkpointing as a 0-1 integer program, which we solve using

standard solvers.

We conduct extensive experiments, demonstrating that MONeT significantly

outperforms existing automatic frameworks that use local or global techniques. On

multiple architectures (ResNet [51], VGG [107], UNet [96], GoogleNet [114], MobileNet-

V2 [98]), memory budgets (5 - 10 GB), and network configurations (multiple resolu-

tions), MONeT consistently achieves lower memory footprints at equivalent or lower

computational overhead. MONeT reduces the overall memory requirement by 3× for

various models, with a 9 - 16% overhead in computation. For the same computa-

tion cost, MONeT requires 1.2 - 1.8× less memory than the current state-of-the-art

automated checkpointing framework. The results achieved by MONeT demonstrate

the power of jointly optimizing global checkpointing schedules and local operator

implementations.

Our contributions

4

• We develop MONeT, a framework that bounds memory usage during training

to a user-provided cap.

• We analyze how memory is used in the forward and backward passes of deep

network training for checkpointing and different memory-saving techniques.

• We introduce the idea that operator optimization can work hand-in-hand with

checkpointing and develop an encoding to jointly optimize both these techniques

for training.

1.2 Network Communication in Distributed ML

Deep learning models can get too large for the resources of a single GPU

and have to be distributed across multiple servers, each with several GPUs, using

different parallelism strategies [105, 73, 45] for training and inference. Intermediate

data and parameters of the model at each GPU need to be accumulated, shuffled, and

transferred over the network between other GPUs for distributed machine learning,

and result in network communication. Recent work has shown that GPU idle time

spent waiting for network communication can be significant in practice [99, 71, 48, 75].

Thus, efficient communication between GPUs is the key to enabling fast distributed

ML training and inference.

Modern GPU systems use message passing interface (MPI)-based collective

communication primitives, such as Allreduce, Allgather, and Alltoall to as

abstractions for inter-GPU communication. Inefficiencies in implementing collective

communication primitive can cause poor network utilization, causing GPUs to remain

idle until inter-GPU transfers complete [124] and reducing the overall efficiency of

distributed training and inference. Newer generations of faster GPUs will only make

this problem worse.

We introduce TACCL [104] (Topology Aware Collective Communication Li-

brary), a collective communication library that synthesizes efficient communication

5

algorithms for a given topology and a target collective communication primitive. We

encode the problem of finding optimal algorithms for communication collectives into

an integer linear program (ILP) with the goal of minimizing the overall execution

time. Unfortunately, this problem is NP-hard; state-of-the-art commercial solvers

like Gurobi [50] can spend several days exploring the search space without finding

an optimal algorithm. TACCL introduces a new abstraction called communication

sketches that incorporate high-level intuitive inputs provided by an algorithm designer

in order to constrain the search space of algorithms. TACCL also uses a novel integer

linear programming (ILP) encoding of the collective algorithm synthesis problem that

improves scalability by first solving a bandwidth-relaxed version of the problem to de-

cide on routing, followed by ordering heuristics and a second bandwidth-constrained

problem to find a valid scheduling of data transfers in the collective. In addition to

significantly improving scalability, TACCL’s ILP formulation allows modeling hetero-

geneous links with different per-message overhead characteristics.

We use TACCL to synthesize efficient algorithms for a range of collectives

like Allgather, Alltoall, and Allreduce, and for different hardware backends

like Azure NDv2 [10] and Nvidia DGX-2 [83]. We compare TACCL to the state-

of-the-art Nvidia Collective Communication Library (NCCL). TACCL synthesized

an Allgather algorithm for two Nvidia DGX-2 nodes (32 GPUs). This algorithm

is up to 6.7× faster than NCCL for small-to-moderate input sizes. For large input

sizes on the same hardware, TACCL synthesized a different Allgather algorithm

that nearly saturates the inter-node bandwidth and is up to 25% faster than NCCL.

TACCL synthesized an Alltoall algorithm for two Azure NDv2 nodes (16 GPUs)

that are up to 66% faster than NCCL. Finally, we replaced NCCL with TACCL using

only a two-line code change in PyTorch and found that TACCL achieves a speed-up

of 17% in end-to-end training of a mixture-of-experts model that uses Alltoall and

Allreduce, and a speed-up of 11% - 2× in end-to-end training of a Transformer-

XL model distributed over 16 GPUs for varying batch sizes. TACCL’s codebase is

open-source and is actively in use by researchers at universities and practitioners at

6

Microsoft for Azure’s GPU virtual machines.

Our contributions

• We develop TACCL, a system that synthesizes communication algorithms for a

given topology and a target collective communication primitive.

• We introduce communication sketches, an abstraction for user inputs to guide

TACCL into synthesizing efficient algorithms for a large range of hardware

topologies.

• We develop a novel stage-wise encoding of the problem in TACCL’s synthesizer

to scale beyond single-node topologies.

1.3 Data Structure Configurations in Learned Indexes

Different traditional index structures have different performance character-

istics - Hash Tables are used to provide average-case constant-time point lookup

and insert performance. B+Tree indexes are tree-based key-value stores that provide

high range-query performance while also providing good read and insert performance.

LSM-tree is another key-value store design that uses append-only logs for writes and

performs periodic compaction. It has a great write performance but suffers from poor

read performance.

Similar to traditional indexes, the data structure of learned indexes also needs

to be determined by database administrators according to the expected workload in

order to achieve high performance. However, workloads tend to change as new services

are introduced and old services are updated. Further, workloads may periodically

change based on certain diurnal patterns.

We introduce MAPLE, a parameterized learned index that can achieve high

performance for different types of workloads. The core idea behind MAPLE is that

7

carefully selecting and parameterizing a handful of data structures as index com-

ponents can help achieve a wide range of spectrum on the read-write performance

curve while maintaining similar memory footprints. MAPLE uses two parameterized

learned data structures, gapped-array and fragmented-log, as components in build-

ing the index. MAPLE also includes a neural network that is used to model the

throughput of the index obtained with the different parameters of the learned index

as features. Once a partial workload trace is seen, the throughput model is used to

select an appropriate configuration for the MAPLE index. In this way, MAPLE’s

index structure can adapt to a variety of different workloads.

We evaluate MAPLE against an existing state-of-the-art updatable learned in-

dex ALEX [36] for a range of workloads. We perform our evaluations using datasets

obtained from the SOSD [66] benchmark for learned indexes, which include a dataset

from OpenStreetMap [88] (osm). For read-only workloads, MAPLE performs sim-

ilarly to ALEX using a parameterized gapped-array, whereas, for write-only work-

loads, MAPLE performs up to 7.5× faster when using a fragmented-log. For an osm

workload with 15% read-to-write ratio and using configurations identified by our al-

gorithm, MAPLE is 2.1× faster than ALEX while using about 10% higher memory

than ALEX.

Our contributions

• We develop MAPLE, a workload adaptable learned index that can obtain high

performance for a variety of different workloads.

• We discuss the challenges in building a parameterized learned index.

• We identify and model the parameters of data structures that can be tuned

to provide high performance for various kinds of workloads, which we use as

components in building MAPLE.

• We design an algorithm to determine the configuration parameters for MAPLE

by using a machine learning model to predict the index throughput.

8

1.4 Outline

The rest of this dissertation is organized as follows. Chapter 2 provides the

background concepts needed for this dissertation, specifically concepts regarding deep

learning training, distributed deep learning, and index structures. Chapter 3 discusses

memory usage and network communication in deep learning and workload variabil-

ity in databases, thus motivating the problems solved in this dissertation. Chap-

ter 4 introduces MONeT, a framework for memory-optimized deep network training.

Chapter 5 introduces TACCL, a topology-aware collective communication library.

Chapter 6 introduces MAPLE, a parameterized learned index. Chapter 7 discusses

prior work related to the systems introduced in this dissertation. Chapter 8 describes

some avenues to extend the work in this dissertation. Finally, Chapter 9 summarizes

the dissertation, highlights lessons learned, and presents concluding remarks.

9

Chapter 2: Background

In this chapter, we provide the background required for various aspects of

this dissertation. First, we describe deep networks and how they are trained using

forward and backward passes as well as the arithmetic involved in some common

deep network operators (§ 2.1, § 2.2). Next, we discuss distributed deep learning

and the characteristics of network communication involved (§ 2.3, § 2.4). Finally,

we discuss the properties of different index structures and the fundamental insights

behind learned indexes (§ 2.5, § 2.6).

2.1 Deep networks and deep learning training

The goal of deep learning is to fit a non-linear function, called a deep network,

onto a dataset. The deep network consists of a set of learned parameters and a

directed acyclic graph (DAG) of arithmetic operators. In a trained deep network,

the DAG operates on the inputs and the parameters of the network to generate an

output that matches the expected or target output.

Training a deep network is an iterative process. The training dataset is divided

into mini-batches of equal sizes (denoted as batch size). In each training iteration,

a mini-batch is randomly chosen without replacement from the remaining training

dataset and used to train the network. When the complete training set is used up

in the iterations, we say that training has finished one epoch. Training continues

until a fixed number of epochs have been reached or until the network has reached

some accuracy. Since each iteration of deep network training performs the same DAG

operations on the same input size, the performance profile across training iterations

remains the same.

An iteration in deep learning training takes place as follows. First, we initialize

the deep network parameters with random values. We run a forward pass over the

10

Algorithm 1: Forward Pass

Input : Inputs, θ.
Output: Output tensor

1 D = {}; /* Saved tensors for backward */

2 L = {inputs, θ}; /* Local tensors for forward */

3 for i = 1 . . . N do
4 xi = forwardi(L);

5 Add xi to L;
6 Remove all tensors from L that are not used later;

7 if i ∈ D then
; /* Forward dependencies for backward */

8 Add xi to D;

9 return L;

Figure 2.1: Schematic overview of the forward pass.. The algorithm runs the
forward pass DAG one operation at a time.

network to obtain the network output. We compare it with the target output to gen-

erate a loss value calculated using different metrics such as Mean-Squared Error and

Cross Entropy Loss. We then run a backward pass in reverse, also called the gradient

back-propagation step, in order to calculate the gradients of the loss with respect to

the learned parameters. These gradients are then used to update the parameters using

different optimization strategies like Adam [65] and Stochastic Gradient Descent [97].

We formalize the steps taken during the forward and backward pass below:

The Forward Pass. Alg. 1 shows a general overview of the forward pass in a

deep network, as implemented in standard deep learning frameworks [62, 30, 90, 7].

The algorithm proceeds in increasing order of index i. Each operator forwardi(·)

depends on a set of tensors L stored in local memory. These tensors include model

parameters Θ, computational dependencies of the operator Ni, and tensors stored

11

Algorithm 2: Backward Pass

Input : Loss gradients, inputs, θ, D.
Output: Output tensor

1 L̂ = {loss gradients}; /* Local backward tensors */

2 L = D; /* Local forward tensors */

3 for k = N . . . 1 do

4 yk = backwardk(L̂, L);

5 Add yk to L̂;
6 Remove tensors from L that are not used later;

7 Remove tensors from L̂ that are not used later;

Figure 2.2: Schematic overview of the backward pass.. The algorithm runs
the backward pass DAG one operation at a time. Backward pass operators have
computational dependencies on the operator outputs of the forward pass.

for later forward operators, i.e. skip or residual activations [51]. The output tensor,

also called output activation, obtained on execution of each operator forwardi is also

added to the local memory L. Tensors present in local memory L that are no longer

used in later computations can be freed. Some output activations xi are used in the

backward pass and have to be saved for later. We represent D to denote all activation

indexes required in the backward pass and D to denote the set of these activations.

The Backward Pass. The backward pass proceeds in reverse order, as summarized

in Alg. 2. backwardk(·) of each node k depends on a set of gradient tensors L̂ and

forward pass computational dependecies {xi : xi ∈ Dk}. Any gradients required by

the current and later backward passes are stored in local memory L̂. The backward

operation produces a gradient for each input tensor of the original forward operation,

which is added to L̂ if required for a later backward computation. Tensors not required

later are removed from L and L̂.

2.2 Common deep network operators

Both forward and backward passes of deep networks are DAGs, with the type

of operator determining computational dependencies. We describe some commonly

12

used operators and the computational dependencies involved in their forward and

backward passes.

Convolution. A convolution operator takes as input an N-dimensional tensor and

has two learnable parameters - a weight tensor and a bias tensor. A window the

size of the weight tensor slides over the input tensor and performs a dot product

of the weight tensor and the selected area of the input, which is then added to the

bias in order to obtain the output tensor. There can be multiple weight tensors in a

convolution operator, each concurrently performing the sliding window dot product.

In the backward pass, the backward convolution operator is actually made of

two distinct operations. Both operations take in the output-gradient as input. (Note

that, when we say output-gradient, we mean the gradient of the loss with respect

to the output tensor.) The first operation also takes as input the weight and bias

parameters and generates the input-gradient of convolution, which is propagated back

to earlier operators. The second operation takes the forward convolution input and

produces a parameter-gradient, that is used to update and learn the weights and bias

parameters.

The forward and backward convolution operators are the most compute-intensive

operators in deep learning.

Matmul. The matmul operator has weights and bias as learnable parameters and is

used to implement a fully connected layer in a deep network. It performs a matrix

multiplication of the input and the weight parameter following which the bias is added

to obtain the output the matmul operation.

In the backward pass, the input-gradient is calculated by matrix multiplication

of the output-gradient with the weight parameter, the weight-gradient is obtained by

matrix multiplication of output-gradient and matmul input, and the bias-gradient is

obtained from a sum of the output-gradient elements.

The matrix multiplication operator is second in the list of compute-intensive

operators in deep learning.

13

BatchNorm. A batchnorm operator is applied to normalize the input. It has two

learned parameters - weight and bias. During the forward pass, the mean and variance

of the input are calculated and stored in memory. They are used to normalize the

input, following which it is scaled and shifted using the weight and bias parameters

respectively to produce the batchnorm output.

During the backward pass, the backward batchnorm operator takes in the

output-gradient, produces the parameter-gradients by using the input, and produces

the input-gradients by using the weight parameter, the stored statistics, as well as

the inputs.

ReLU. The relu operator is used to add differentiable non-linearity to the network

and does not have any parameters. It simply takes an input tensor and filters out its

non-negative elements to 0 while letting the rest of the elements pass as-is.

In the backward pass, the relu backward operator also filters the output-

gradient elements to generate the input-gradient elements. The filter is determined

by which elements were allowed through in the forward pass. Thus, the relu backward

operator also takes in the relu input to produce the input-gradient.

MaxPool. The maxpool operator is used to reduce the size of intermediate input

tensors in the deep network DAG. It downsamples the input by taking only the

maximum value from a sliding window to obtain the output. This operator does not

have any parameters.

In the backward pass, the maxpool operator upsamples the output-gradient

by placing each output-gradient element in the index at which the maximum value

in the input was present. The other elements in the input tensor receive a gradient

of zero since they did not contribute to the maximum value. Note that this means

that the maxpool backward operator also needs to use the maxpool input in order to

compute the input-gradient.

14

0 1 2 3

0 1 2 3

(i) AllGather (ii) AllToAll (iii) AllReduce (sum)

= + + +()
0 1 2 3 0 1 2 3 0 1 2 3

Figure 2.3: The initial and final data buffers on four GPUs participating in different
collectives.

2.3 Distributed deep learning

As deep networks get larger, they are increasingly being distributed across

multiple GPUs and servers using different distribution paradigms. For example, data

parallelism involves each GPU running a forward and backward pass of the same

model and aggregating their gradients at the end of each training iteration. Model

parallelism involves executing different operators on different devices and using peer-

to-peer communication to communicate operator outputs. Tensor model parallelism

is implemented in transformer models like Megatron [105] in which a single parameter

exceeds GPU memory. In this case, the operator is replicated across multiple GPUs

and its parameters are sharded into multiple partitions. Each transformer block

performs aggregation of activations in the forward pass and aggregation of gradients

in the backward pass. Finally, we also have expert model parallelism [73, 45] where

every other transformer block shuffles data with all the other experts.

2.4 Characteristics of network communication in distributed
ML

In all paradigms of distributing deep networks, the GPUs need to accumulate,

transfer, or shuffle data between each other. Deep learning frameworks use MPI-

style communication collectives [40] as abstractions for the communication patterns

required in distributed deep learning.

In this section, we further explain the different types of communication collec-

tives commonly used in distributed deep learning. Multi-GPUML workloads typically

15

communicate using MPI-style collectives like Allgather, Alltoall, and Allre-

duce. Figure 2.3 shows the initial and final states of running these collectives on

a 4-GPU system. In Allgather, every GPU receives the data buffers of all other

GPUs (left diagram in Figure 2.3). In Alltoall, every GPU receives different parts,

or chunks, of the data buffers present on all GPUs. This effectively transposes the

data chunk from buffer index to GPU index as can be seen in center diagram in Fig-

ure 2.3. In Allreduce, every GPU ends up with a data buffer that has the results

of performing a point-wise computation (e.g., sum in right diagram in Figure 2.3)

over the same data index of all GPUs. In Reducescatter, every GPU receives a

part of the reduced data buffer.

The parallelism strategy for the distributed ML workload determines which

collective communication primitive is used. Data parallelism and some tensor model

parallelisms [105] make use of the Allreduce collective to aggregate gradients and

intermediate data respectively from multiple GPUs. Expert parallelism [73, 45] and

common deep learning recommendation models (DLRM) [80] make use of the All-

toall collective to shuffle intermediate data between experts and embedding lookup

data between GPUs respectively. DLRMs [80] also make use of the Allgather col-

lective and another Reducescatter collective to perform embedding lookups from

embedding tables sharded over multiple GPUs.

2.5 Data structures in database indexes

Database indexes are used to speed up access to databases. Index structures

are generally designed according to the type of workload that is expected in the

system. Different index structures can have different performance characteristics.

We discuss some commonly used data structures that are used to build indexes and

for what workloads they are used.

B+Tree. B+Tree indexes are tree-based key-value stores that consist of internal tree

nodes that can be traversed to partition the key space. The leaf nodes in the B+Tree

16

contain keys stored in a sorted manner and point to the location where the actual

data is stored. B+tree indexes can provide high range-query performance while also

providing good read and insert performance.

LSM-tree. LSM-tree is another key-value store design that uses append-only logs

for writes and performs periodic compactions. It has a great write performance but

suffers in read performance.

Hash tables. Hash tables are another key-value store that are great for point lookups

and inserts but suffer from poor range query performance.

Based on the expected workload, a database administrator has to decide which

index structure to use.

2.6 Learned Indexes and ALEX

Insights behind learned indexes. At its core, a database index maps a key

to its position in the data. Using this idea, Kraska et.al. [69] proposed looking at

indexes as learned models. The models can learn an approximation of the cumulative

distribution function (CDF) F of sorted input data of size N. When a data item k is

queried, its approximate position would be at n = F(k) ∗ N . By maintaining error

bounds as ϵ, the data thus needs to be searched only in the range n − ϵ to n + ϵ,

instead of the entire range of data.

Since data is not usually uniform and its CDF may be hard to learn, Kraska

et.al. proposed building hierarchical models (called Recursive Model Index, or RMI)

in order to reduce the error bounds in fitting the data. The hierarchical models in

the RMI can be compared to the internal nodes of a B+Tree, which are traversed to

navigate the key partitions. However, unlike in the B+Tree, the RMI does not need

to store keys for comparison in the internal nodes. By performing model lookups to

traverse the hierarchical models instead of having to compare against keys present

in the internal nodes as in a B+Tree, RMI is able to achieve fast lookups. Further,

17

because of not storing keys for comparison in the internal nodes, the RMI has a much

lower memory footprint than B+Tree. On reaching the leaf node, a ”last-mile” binary

search is performed within the node’s error bounds.

In order to keep computation cost low, the RMI is often shallow and has

high fanout. In their evaluation, Kraska et.al. [69] use a two-level RMI with a large

fanout ranging from 10000 to 200000. The root node at the first level has a simple

to semi-complex neural network model, with up to 2 hidden layers which are 8- or

16-unit wide. The leaf nodes at the second level have simple linear models. While

learned indexes use model-based computation, they are generally implemented on

CPUs instead of hardware accelerators like GPUs in order to replace existing index

structures without requiring changes in the hardware.

Insights behind ALEX. While the RMI allows high-performance lookups using

a learned model, it does not support efficient inserts. ALEX [36] is an updatable

learned index that uses linear models in the internal nodes and an interesting Gapped

Array data structure in the leaf nodes. A Gapped Array node has interspersed gaps

in-between sorted keys which allows for faster model-based reads and model-based

writes.

Since the last-mile search in the Gapped Array is model-based, ALEX can

allow a large leaf node without facing performance penalties. Similar to RMI, ALEX

also has a low memory footprint, allowing for a higher fanout of internal nodes. With

its high fanout and large leaf nodes, the trees in ALEX are largely flat. All of these

factors contribute to the high performance that is provided by learned indexes.

18

Chapter 3: Motivation

Based on the background material presented in Chapter 2, we now motivate

this dissertation. We saw that deep learning training is done using forward and back-

ward passes of deep networks and that MPI-style communication collectives are used

for network communication in distributed machine learning. We also discussed the

characteristics of different types of index structures, including learned index struc-

tures.

In this chapter, we identify the major contributors to memory usage in deep

network training (§ 3.1) and discuss the limitations of some existing memory-saving

techniques (§ 3.2). We then discuss the challenges of hardware heterogeneity in dis-

tributed ML (§ 3.3) and how commonly used existing communication libraries fall

short in dealing with them (§ 3.4). Finally, we discuss how real-world workloads can

vary with time (§ 3.5) and discuss the limitations of learned indexes in adapting to

these changes (§ 3.6). We thus motivate the need to build tools that can search the

state space of different techniques for optimizing memory usage and network com-

munication algorithms in deep learning, and index configurations for learned indexes,

while not needing an expert.

3.1 Memory requirement in deep network training

In this section, we discuss the contributions to memory usage in deep network

training. Deep network parameters are normally kept in memory and contribute to

memory usage. Parameter gradients computed during the backward pass also con-

tribute to memory usage. Further, many operators, like convolutions, use temporary

workspace memory that contributes to memory usage. Finally, as discussed in § 2.1,

forward pass activations are stored as computational dependencies for the backward

pass, and contribute to the total memory usage. We obtain the contributions of all

19

Figure 3.1: Contributions to memory usage in training deep networks.

the previously described components to memory usage when the memory consump-

tion is at its peak. Figure 3.1 plots this data for several deep learning networks like

ResNet-50, GoogleNet, VGG-16, etc., run using PyTorch on a 16-GB Nvidia P100

GPU. The batch size is mentioned in parentheses next to their names. This is the

maximum possible batch size that can be run on a single GPU. We observe that the

forward computational dependencies contribute the most to memory usage during

deep network training. Thus, it is important to develop techniques to reduce this

contribution.

3.2 Existing memory saving techniques

In this section, we explain some existing memory-saving techniques and discuss

the tradeoffs that are involved in these techniques. There are two broad families

of approaches to reduce the memory footprint of a deep network during training:

operator-level implementation changes, and global, graph-level optimizations.

Operator-Specific Optimizations. Researchers have found creative ways to imple-

ment individual operators or groups of operators in a more memory-efficient manner.

Standard deep learning frameworks [62, 30, 90, 7] provide different implementations

of certain operators that trade computation for intermediate memory use. For exam-

20

ple, the convolution operator can be implemented using multiple different algorithms,

each with different compute costs and workspace memory requirements. These im-

plementations are chosen according to local search heuristics and are not globally

optimal.

Gist [58] proposes several hand-crafted optimizations such as storing only

ReLU signs. RevNets [49] redesigns a ResNet [51] architecture making each network

block reversible, thereby eliminating the need to store intermediate activations for

back-propagation. Memory-efficient DenseNets [94] reduce memory utilized for fea-

ture maps by recomputing all intermediate feature maps during the backward pass

with a small compute overhead. In-place activated batchnorm [17] or ReLU layers use

output activations to compute their gradients, thus reusing a single memory buffer for

the gradient computation in consecutive layers. Although these hand-crafted tech-

niques independently result in memory savings, it is difficult to know which technique

should be applied when, and different implementations perform best on different ar-

chitectures.

Checkpointing. [24] proposed dividing a network into different segments, dropping

all intermediate outputs within each segment, and recomputing them later. Chen et

al. use
√
n equal segments, trading memory savings for the cost of an extra forward

pass. However, the computation costs of different operators and the memory require-

ment of intermediate outputs vary along the DAG, and dropping equal segments may

be sub-optimal in terms of performance.

A prior work, Checkmate [59] attempts to solve the memory-usage problem in

a more general setting, using a mixed-integer linear program solver to decide which

layers to recompute for a given network. However, it fails to take into account local

operator optimizations. In Checkmate, changes in operator implementation induce

a different computation graph, and could thus not directly be optimized. We later

highlight some of the difficulties of adding operator optimizations into Checkmate.

In summary, while much work has been done on local optimizations (operator

21

NVLinks

Node 1 Node 2

Figure 3.2: NVLink connectivity of a NDv2.

implementations) and global compute-graph-level techniques, these techniques have

not been explored together. Further, it is not easy to identify which technique should

be used when. Thus, there is a need to automate choosing different operator-specific

and checkpointing-based memory-saving techniques as well as their joint optimization.

3.3 Hardware heterogeneity in distributed deep learning

There exists a wide variety of multi-GPU systems to meet the scaling chal-

lenges posed by growing ML models, which result in high hardware heterogeneity.

Modern GPU systems, e.g., Azure NDv2 (Figure 3.2) and Nvidia DGX-2 (Figure 3.4),

have the different types of interconnects: (1) Peripheral Component Intercon-

nect Express (PCIe), (2) NVLink [86], (3) Infiniband (IB) NICs [84]. A PCIe

bus connects GPUs to CPUs with limited shared bandwidth (PCIe Gen3 offers ≈ 13

GBps). PCIe connections often form a hierarchy with PCIe switches (Figure 3.3).

NVLink [86], however, is a GPU to GPU intra-node connection with dedicated band-

width. NVLinks are either directly connected to other GPUs (Azure NDv2 in Fig-

ure 3.2) or they are connected to other GPUs via NVSwitches [87] (Nvidia DGX2 in

22

NIC

PCIe
switch

Figure 3.3: PCIe connectivity of a NDv2.

Figure 3.4). NVSwitches enable fully-connected GPU-GPU communication through

NVLinks. This introduces heterogeneity in the types of hardware used for deep learn-

ing.

Further, even a cluster of machines of the same type is inherently heteroge-

neous. IB is a multi-node interconnect which allows GPUs to communicate with GPUs

in other nodes like in the Azure NDv2 (Figure 3.3). IB NICs are usually connected to

PCIe switches and GPUs may communicate directly with the NICs through Remote

Direct Memory Access (RDMA) or indirectly via host memory. The IB interconnect

is typically much slower than intra-node interconnects. The disparity between the

speeds of the intra-node and inter-node interconnects in GPU topologies are a major

cause of heterogeneity.

There also exist multiple cases where the physical topology is not fully known

or documented. For example, for Azure NDv2 systems the physical topology is not

fully documented: while the NVLink topology (Figure 3.2) is known to match that

of Nvidia DGX1, we did not know how GPUs and the one 12.5 GBps InfiniBand NIC

were connected with PCIe. PCIe peer-to-peer communication (and thus GPUDirect

RDMA [4]) is not enabled on these machines, meaning that all communication happen

through buffers in CPU memory over potentially shared PCIe links. Further, virtu-

alization obscures the true PCIe topology (all 8 GPUs and the NIC appear directly

23

NVSwitches

Figure 3.4: NVLink connectivity of a DGX-2.

connected to one CPU) and NUMA node and GPU IDs are not assigned consistently

from VM to VM. This means that, without additional information, the software can-

not avoid contention over shared PCIe links, creating interference and high variance

in performance.

3.4 Existing network communication libraries

Collective algorithms must be designed considering the target input sizes and

the heterogeneity of the target topology. However, most collective communication

libraries used for distributed ML today, including the state-of-the-art NCCL [85], use

pre-defined templates of collective algorithms superimposed onto a target topology.

For example, for collectives like Allgather and Reducescatter, NCCL

identifies rings in the target topology and uses the Ring algorithm. For n GPUs, this

algorithm requires n−1 link transfer steps per data chunk and is not ideal for smaller

data sizes where link transfer latencies dominate. Further, this algorithm treats the

slow inter-node and fast intra-node links similarly, scheduling equal number of data

transfers across both. The communication is thus bottlenecked on the slower inter-

24

node links, when it could have benefitted by sending more node-local data (i.e. data

of GPUs local to the node) over the faster intra-node links instead. For theAlltoall

collective, NCCL implements the collective algorithm as peer-to-peer data transfers

between all pairs of GPUs. This algorithm is topology-agnostic and often inefficient.

For the Allreduce collective, NCCL chooses between two algorithms — Double-

Binary-Tree [82] and Ring. This decision is made according to the communication

input size and number of nodes, but might not be most accurate, as it is based

on hardcoded latency and bandwidth profiling done previously by Nvidia on their

machines.

Designing efficient collective algorithms requires careful analysis of the topol-

ogy and its performance with different buffer sizes. Recent work [116, 18] has shown

that synthesis is a promising approach for generating collective algorithms for dif-

ferent topologies and achieving bandwidth and latency optimality. However, scaling

these approaches to multi-node (i.e. multi-machine) distributed GPU topologies has

been a challenge. We measured the synthesis time for Allgather and Alltoall

collectives on topologies of two Azure NDv2 nodes and two Nvidia DGX2 nodes using

SCCL [18, 79]. We modified the codebase to include both topologies and attempted

to synthesize the collectives with a 24-hour time limit set for each synthesis query.

Given a 24-hour time limit, SCCL’s pareto-optimal solver strategy did not finish

synthesis for any combination of collective and topology. The only algorithm that

SCCL could synthesize within the time limit was a latency optimal algorithm for

Allgather on two NDv2 nodes.

Thus, while generic libraries like NCCL give up on performance by not being

tailored to particular hardware topology and input size, synthesis-based libraries like

SCCL time out when generating algorithms for multi-node systems. Thus there is

a need for a topology-aware and input-aware collective algorithms that can scale to

multi-node topologies.

25

Figure 3.5: Comparing throughput of indexes for varying workload patterns for the
OpenStreetMaps CellIDs dataset.

3.5 Workload variety in database indexes

Production services generally tend to see a wide variety of workloads ranging

along the spectrum of read-only, write-heavy, and write-only workloads. There exist a

bunch of workloads coming from different services such as SQL queries, deep learning

applications, Apache Spark data analytics, as well as document and media servers.

From the IBM Cloud Object Store traces [44], we observe that these different kinds

of services have different read/write profiles. Production workloads may also change

periodically with time. Some workloads may show a strong diurnal pattern of 24-

hours. For example, for serving a social network, the read to write ratio usually

reaches a peak of 4:1 at around 5 pm when when people might read content during

off-work time, whereas it reduces to 2:1 during working hours [125, 19]. Further,

new services and applications keep getting added and the workload characteristics of

production databases keep changing over time [39]. This points to a need to be able

to adapt to a wide variety of workload patterns over time.

26

3.6 Performance of existing learned index structures

In § 2.5, we discussed that different traditional index structures are designed

to provide high performance for different types of workloads. In this section, we

discuss the performance obtained by a state-of-the-art learned index, ALEX [36], as

workload pattern changes.

ALEX maintains a cost model per leaf node to identify significant cost devia-

tion from its expectations of lookups and inserts. The cost model tracks the average

number of searches required for a lookup and the average number of key shifts required

for an insert. Based on these, ALEX decides between the structural modifications of

expanding or splitting nodes and adapts to changes in workload distribution.

However, as also noted by Wongkham et. al. [120], while ALEX performs

better than other updatable learned indexes for most workloads, it is not suitable

for write-heavy workloads. The performance achieved by ALEX is fundamentally

limited by its underlying data structure that has to store data in a sorted manner.

Let us consider a hypothetical example of a trace with varying workload patterns. We

consider a real-world dataset osmwith 400 million keys obtained from the cell ids from

Open Street Map. Since synthetic datasets can be trivially fit by learned indexes,

osmis one of the real-world datasets used in benchmarking learned indexes [77]. We

bulk-load ALEX with 50 million keys and run it against a workload with 150 million

read-heavy operations, followed by 150 million write-heavy operations, and finally

followed by 150 million write-only operations. The read-heavy operations have a 85%

read-to-write ratio and the write-heavy operations have a 15% read-to-write ratio.

Figure 3.5 shows the throughput obtained by ALEX over time and compares it against

a traditional B+Tree index as well as a write-optimized learned index, Fragmented

Log (FLog or fragmented-log), that keeps keys unsorted and will be introduced later.

We find that ALEX performs better than B+Tree for read-heavy workloads

but its performance falls as the insert fraction increases. We also see that the write-

optimized Flog performs better than ALEX for write-only and write-heavy workloads.

27

We find that even if ALEX expects a write-heavy workload (by setting the expected

insert fraction to 1, thus labelled ALEX-W), it cannot outperform an index specifi-

cally configured for a write-heavy workload. Thus, we need to build suitable learned

components that can facilitate fast data access according to different expected work-

loads.

3.7 Summary

We motivated the need for automated tools for optimizing various aspects of

ML systems without requiring an expert.

28

Chapter 4: MONeT: Memory Optimization for

Deep Networks

In Chapter 3, we discussed that deep network training is memory-intensive

owing to the computational dependencies of backward pass operators on forward pass

activations. We looked at existing memory-saving techniques and saw that they need

to be handcrafted according to the network architecture by experts who understand

their tradeoffs.

In this chapter, we present MONeT, an automated framework that minimizes

memory footprint for deep networks by jointly optimizing global compute-graph-

level memory-saving techniques (such as checkpointing) and local techniques (such

as memory-efficient implementations of individual operators) 1. MONeT encodes the

peak memory usage of training into a 0-1 integer linear programming problem (ILP)

which can then be solved to optimize for the most efficient forward and backward

pass implementation under a fixed user-provided memory budget.

First, we discuss the goals of MONeT (§ 4.1). We then provide an overview

of MONeT’s design (§ 4.2), theoretically analyze memory consumption at each stage

of network training (§ 3.1), and describe how MONeT formulates the ILP in order to

achieve memory-constrained training at low computational overhead (§ 4.2.2, § 4.3).

Finally, we describe MONeT’s implementation (§ 4.4) and evaluate it against existing

memory-saving techniques (§ 4.6).

4.1 Goals

• The forward and backward operator schedules generated by MONeT should

always use less memory than the user-provided memory budget.

1This Chapter is based on the work, Memory Optimization for Deep Networks, published in
ICLR’21 [103]

29

Figure 4.1: Memory Optimized Network Training (MONeT). MONeT is an
automatic framework that minimizes the memory footprint of deep networks by jointly
optimizing global and local techniques.

• The schedules generated by MONeT should introduce as little computational

overhead as possible.

• MONeT should be able to generate schedules in much less time than it would

take to train the deep network.

• MONeT should be able to execute the schedule it generates on real hardware.

4.2 Design

In order to build MONeT, we perform a theoretical analysis to provides tight

bounds on memory consumption in the forward and backward pass of deep network

training as well as during the recomputation stages of checkpointing. We then formu-

late the problem as 0-1 integer program with constraints to bound the peak memory

consumption at all stages of training and an objective to minimize the computational

cost of training. These terms are all expressed as linear functions of implementation

selection and checkpointing. MONeT then uses these constraints to optimize for the

most efficient forward and backward implementation both locally and globally under

a fixed user-provided memory budget. The solution, shown in Figure 4.1, determines

the schedule for checkpointing and operator implementations.

30

Notation Meaning

Tensors

xi Tensor which is the output of forwardi in forward pass and during
recomputation.

yk Gradient tensor which is the output of backwardi in the backward
pass.

Sets

SN
i Set of stored tensors after forwardi in forward pass. (N = num back-

ward operators)

Li Set of all parameters and forward tensors created till forward node
i, required as computational dependencies for forwardi and later for-
ward passes.

Dk Set of forward pass tensors required as computational dependencies
for backwardk.

Sk−1 Set of stored forward pass tensors right before calling backwardk.

L̂k Set of gradient tensors created before backward node k, and required
as computational dependencies for backwardk and later backward
passes.

Sk−1
i Set of stored tensors available to recomputation of forwardi before

computing backwardk.

Lk
i Set of all parameters and forward tensors created till forward node

i, required as computational dependencies for forwardi and later for-
ward recomputations to be done before backwardk.

Ii Set of implementations for operator forwardi.

Îk Set of implementations for operator backwardk.

Solver variables

sNi Indicate if output of forwardi is stored in memory in the forward pass.

sk−1
i Indicate if output of forwardi is stored in memory when computing

backwardk.

rki Indicate if forwardi is recomputed before computing backwardk.

δi,l Indicate if forwardi uses implementation l ∈ Ii in the forward pass.

δki,l Indicate if forwardi uses implementation l ∈ Ii when recomputed
before backwardk.

δ̂k,l Indicate if backwardk uses implementation l ∈ Îk.

Memory formulations

mi Peak memory of forwardi in forward pass.

m̄k
i Peak memory of forwardi when it is recomputed before backwardk.

m̂k Peak memory of backwardk.

Operator costs

cli Workspace memory of operator forwardi executed using implementa-
tion l ∈ Ii.

ĉlk Workspace memory of operator backwardk executed using implemen-
tation l ∈ Îk.

τ li Compute cost of operator forwardi executed using implementation
l ∈ Ii.

τ̂ lk Compute cost of operator backwardk executed using implementation
l ∈ Îk.

Table 4.1: Notations used in paper with explanations. Notations with only i
in subscript/superscript generally relate to the forward pass, with only k relate to the
backward pass, and with both i and k relate to the recomputation phase.

31

4.2.1 Theoretical Analysis of Peak Memory Consumption

We now provide a theoretical analysis of peak memory consumption in the for-

ward pass, backward pass, and recomputation stages. Table 4.1 provides a reference

to the notations introduced in this section along with their explanations.

As discussed earlier in § 2.1, the forward pass of a deep network with parame-

ters Θ is expressed as a directed-acyclic graph (DAG), where each node i ∈ {1, . . . , N}

corresponds to an operator forwardi, and edges (i, j) ∈ E specify the data-flow de-

pendencies, i.e., , the output of operator i is used as input in operator j. With-

out loss of generality, computational dependency (i, j) ∈ E implies i < j. Let

Nj = {i : (i, j) ∈ E} be the set of all incoming edges of an operation j.

We will first modify our discussion of the forward pass through a network and

the basic form of a backward pass done previously in § 2.1 by adding checkpointing.

Checkpointing allows either saving or recomputing forward pass activations depend-

ing on a schedule (s, r). The backward pass reverses all computational dependency

expressed in our DAG, and induces certain dependencies on forward activations. We

call these checkpoint dependencies Dk. Recomputation from checkpoints creates a

trade-off between compute cost and memory consumption. To highlight this tradeoff,

we formally obtain the amount of memory consumed in the forward, backward, and

recomputation phases when a checkpointing plan (s, r) is already provided. This will

then allow us to optimize for the ideal execution plan in § 4.2.2.

The Forward Pass. Alg. 3 shows a general overview of the forward pass in a deep

network with checkpointing enabled. The algorithm proceeds in increasing order

of index i. Each operator forwardi(·) depends on a set of tensors L stored in local

memory. These tensors include model parameters Θ, computational dependencies Ni,

and tensors stored for later forward operators, i.e. skip or residual activations [51]. At

each iteration, we add any output tensors of forwardi to the local memory L. Early

deep learning frameworks [62, 30] strictly grew the set of local tensors L leading to

an unnecessarily high memory consumption. Modern graph-based frameworks [90, 7]

32

Algorithm 3: Forward Pass

Input : Inputs, θ, a schedule (s, r).
Output: Output tensor

1 SN = {}; /* Saved tensors for backward */

2 L = {inputs, θ}; /* Local tensors for forward */

3 for i = 1 . . . N do
4 xi = forwardi(L);

5 Add xi to L;
6 Remove all tensors from L that are not used later;

7 if sNi then
8 Add xi to SN ;

9 return L;

Algorithm 4: Backward Pass

Input : Loss gradients, inputs, θ, SN , (s, r).
Output: Output tensor

1 L̂ = {loss gradients}; /* Local backward tensors */

2 for k = N . . . 1 do
3 L = Sk; /* Local forward tensors */

4 Sk−1 = {}; /* Saved tensors */

5 for i = 1 . . . N do
6 if rki then
7 xi = forwardi(L);
8 Add xi to L;

9 Remove all tensors from L not used later;

10 if sk−1
i then

11 Add xi to Sk−1; /* use xi ∈ L */

12 yk = backwardk(L̂, L);

13 Add yk to L̂;

14 Remove tensors from L̂ that are not used later;

Figure 4.2: Schematic overview of the forward and backward passes with
checkpointing. The algorithms include aggressive memory savings by greedily free-
ing unused tensors, and allow for a general checkpointing schedule (s, r) to be exe-
cuted.

33

reduce the memory footprint by aggressively pruning local memory L and freeing any

tensor that is no longer used in later computations. Some output activations xi are

used in the backward pass, and have to be saved for later. We use a checkpointing

schedule sN to determine which of the activations will be actually saved. Formally,

sNi ∈ {0, 1} indicates whether the output activation of node i is stored during the

forward pass. An activation that is not stored will be recomputed if it is needed

during the backward pass.

Analyzing peak memory consumption of the forward pass. Only the forwardi

operator (Alg. 3 L. 4) allocates memory. All other operators perform mere bookkeep-

ing on existing tensor. It is thus sufficient to study the peak memory consumptionmN
i

in forwardi for each node i. Let Li, S
N
i be the set of local tensors L and saved tensors

S while calling forwardi respectively. Li includes all parameters and computational

dependencies for this and later forward passes Li = Θ ∪ {xj : j ∈ Nt for any t ≥

i and j < i}. Li is constant and computed ahead of time. The schedule sN deter-

mines the set of saved tensors SN
i = {xj : s

N
j = 1 for j < i}. In addition, each forward

operator uses a certain amount of workspace memory ci to store intermediate results.

The total memory consumption of a forward operator is thus

mi = ci + |xi|+ |SN
i ∪ Li| = ci + |xi|+

∑
xj∈Li

|xj|+
∑

j<i:xj /∈Li

|xj|sNj , (4.1)

where | · | refers to the memory consumed by a tensor or set of tensors. Most of the

memory consumption is constant and does not depend on the checkpointing schedule

(s, r).

The Backward Pass. The backward pass proceeds in a reverse order, as summarized

in Alg. 4. backwardk(·) of each node k depends on a set of gradient tensors L̂ and

forward tensors {xi : i ∈ Dk}. Any gradients required by the current and later

backward passes are stored in local memory L̂. Dependencies Dk may either be

stored in Sk or need to be recomputed from checkpoints in Sk. Recomputation

involves forward computation of one or more nodes, which increases computational

34

overhead, and allows for a new set of tensors Sk−1 to be saved. After recomputation,

all dependenciesDk are kept in memory. The backward operation produces a gradient

for each input tensor of the original forward operation, which is added to L̂ if required

for a later backward computation. We aggressively remove tensors in L̂ that are not

required.

Analyzing the peak memory consumption of the backward pass. Peak mem-

ory consumption m̂k again only depends on the forwardi (Alg. 4 L. 7) and backwardk

(Alg. 4 L. 12) operations. For the backwardk operation, let ĉk be the workspace

memory, L̂k be the set of gradient tensors stored, Dk = {xi : i ∈ Dk} be the forward

tensors used, and Sk−1 be the set of newly saved tensors. Here L̂k and Dk can be

pre-computed. The total memory consumption for the backwardk call is

m̂k = ĉk+ |yk|+ |Sk−1∪L̂k∪Dk| = ĉk+ |yk|+
∑
yl∈L̂k

|yl|+
∑
xi∈Dk

|xi|+
∑
xi /∈Dk

sk−1
i |xi|. (4.2)

Here again, only the last term depends on the checkpointing schedule, while the rest

is a constant.

Analyzing the peak memory consumption of the recomputation. Finally, the

peak memory m̃k
i for the forwardi call (Alg. 4 L. 7) in case of recomputation (when

rki is 1) depends on the set of local tensors L, checkpoint dependencies D, saved

tensors S, and gradient tensors L̂, named Lk
i , Dk, S

k−1
i , L̂k respectively. Following

the forward pass, when rki is 1:

m̃k
i = ci + |xi|+ |L̂k|+ |Sk−1

i ∪ Lk
i ∪Dk|

= ci + |xi|+ |L̂k|+
∑

j<i:xj /∈Lk
i ∪Dk

sk−1
j |xj|+

∑
j<i:xj∈Lk

i ∪Dk

|xj|+
∑
j>i

skj |xj|. (4.3)

Unlike the forward pass, Lk
i is no longer constant, but instead depends on past

saved tensors and future recomputations in the schedule (s, r): Lk
i = Θ ∪ {xj : j ∈

Nt for any t ≥ i with rkt = 1 and j < i}.

35

Next, we show how to take this formalization of the forward and backward pass

and find an optimal execution plan including checkpointing schedule (s, r), forwardi

implementations, and backwardk implementations, under a fixed memory budget.

4.2.2 MONeT Formulation

Our goal is to find a global checkpointing schedule (s, r) and local forwardi

and backwardk implementations that jointly minimize the computation cost τ within

a memory budget M . We show how to express this optimization in a 0-1 integer pro-

gram and efficiently solve it. To this end, we linearize any peak memory consumption

constraints, ensure that the checkpointing schedule is valid, and solve to minimize

a computation cost objective. We keep track of the three contributors to memory

and computational cost - forward pass, backward pass, and recomputation of forward

operators.

Memory Constraints. Consider the case of basic checkpointing using only a single

implementation for forwardi and backwardk. The memory consumption of the forward

(4.1) and backward (4.2) pass are linear in s, and thus efficiently expressed in an

integer program. However, recomputation depends both on sk−1 and rk in a non-

linear manner through the local memory Lk
i . This joint dependence on optimization

variables gives rise to quadratic constraints, which cannot directly be incorporated

into an integer program. For simplicity in this derivation, we bound the set of local

tensors from above, assuming every future tensor is recomputed. The upper bound

L̄k
i is constant, yielding a linear upper bound m̄k

i of the recomputation memory m̃k
i

analogous to Eq. 4.3. The set of memory constraints is thus

mi ≤ M ∀i and m̂k ≤ M ∀k and m̄k
i ≤ M ∀k,i (4.4)

To enable operator optimization, we use a bit-vector δ to indicate the selection of

an operator implementation. We add δ to the constraints which allows us to jointly

optimize checkpointing (s, r) and operator implementations δ.

36

Forward Operator Optimization. Let each forward operator forwardi have mul-

tiple different implementations Ii = {a, b, c, . . .}. For examples, convolution may be

implemented using matrix multiplication, the Winograd algorithm [117], a Fourier

transform, etc. [25]. All implementations follow the same DAG structure, and thus

use the same dependencies Ni. However, each implementation trades workspace mem-

ory {cai , cbi , . . .} for computational efficiency {τai , τ bi , . . .} in a different manner. Our

experiments show that this tradeoff is often complex.

Our goal is to represent the peak memory when using multiple forwardi im-

plementations in the forward pass and recomputation. Let δi,a ∈ {0, 1} indicate

that implementation a ∈ Ii is used for forwardi in the forward pass. Each forward

operator should use exactly one implementation
∑

l δi,l = 1. The choice of implemen-

tation determines the operator’s computational cost
∑

l τ
l
i δi,l and workspace memory

ci =
∑

l c
l
iδi,l. Analogously, each recomputation of forwardi during backwardk chooses

between implementations δki,a ∈ {0, 1} when needed
∑

l δ
k
i,l = rki , with equivalent cost

estimates
∑

l τ
l
i δ

k
i,l and workspace memory use cki =

∑
l c

l
iδ

k
i,l. In this formulation, all

additional memory requirements remain linear and are directly integrated into the

linear memory constraints or their linear relaxations (Eq. 4.4).

Backward Operator Optimization. Let each backward operator backwardk have

a set of different implementations Îk = {a, b, c, . . .}. Each implementation again

trades workspace memory {ĉak, ĉbk, . . .} for computational cost {τ̂ak , τ̂ bk , . . .}. While gra-

dient tensors follow the fixed DAG structure, different implementations may depend

on different forward activations {Da
k,D

b
k, . . .}. For example, in-place activated oper-

ators [17] depend on their output activation, while regular operators use the input

activation. This change in the dependency structure makes optimizing for backward-

operator implementations challenging.

We again aim to represent memory in terms of implementations for each

backwardk operator. Let δ̂k,a ∈ {0, 1} indicate that implementation a ∈ Îk is used at

node k in the backward pass. Each backward operator should use exactly one imple-

37

mentation
∑

l δ̂k,l = 1, with a computational cost
∑

l τ̂
l
kδ̂k,l and workspace memory

ĉk =
∑

l ĉ
l
kδ̂k,l. The workspace memory adds a linear constraint to the memory con-

sumption m̂k (4.2).

The biggest changes to the optimization problem, comes from the changing

dependency structure. Dk is no longer constant. Instead, the implementation of a

backward operator changes the set of computational dependencies Dk obtained from

Dl
k. To deal with this changing dependency structure, we use the indicator vector

δ̂k to select memory contribution of dependencies from the chosen implementation.

This changes the backward memory consumption to

m̂k =
∑
l

ĉlkδ̂k,l︸ ︷︷ ︸
ĉk

+|yk|+ |L̂k|+
∑
l

δ̂k,l.|Dl
k ∪ Sk−1|, (4.5)

and the corresponding peak recomputation memory m̄k
i to

m̄k
i = ci + |xi|+ |L̂k|+

∑
l

δ̂k,l.|Sk−1
i ∪ L̄k

i ∪Dl
k|. (4.6)

Note, the last term of (4.5) and (4.6) are quadratic in the original optimization

variables sk−1
i , which determines Sk−1, and δ̂k,l. However, for binary variables, it can

be linearized using an auxiliary variable.

Checkpointing Constraints. The computational dependencies of forward and

backward operators impose strict constraints on the checkpointing schedule. Any

schedule violating these constraints cannot be executed, while any schedule follow-

ing them can. Recomputation rki requires saved sk−1
j or recomputed rkj dependencies

j ∈ Ni, and only previously stored or recomputed tensors can be saved:

rki ≤ sk−1
j + rkj ∀i,k,j∈Ni

and sk−2
i ≤ sk−1

i + rki ∀i,k. (4.7)

Furthermore, all forward tensors Dl
k required by backwardk need to be stored or

computed

sk−1
i + rki ≥ δ̂k,l ∀k,l,i∈Dl

k
. (4.8)

38

Objective. Our goal is to minimize the amount of computation required for the

forward and backward pass. This is represented as the sum of computational costs of

all operators: ∑
i

∑
l

τ li δi,l︸ ︷︷ ︸
forward pass

+
∑
k

∑
l

δ̂k,lτ̂
l
k︸ ︷︷ ︸

backward pass

+
∑
k

∑
l

τ li δ
k
i,l︸ ︷︷ ︸

recomputation

. (4.9)

Objective (4.9) with constraints (4.4), (4.7), (4.8), and definitions (4.1), (4.5),

(4.6) form our final optimization objective. It jointly solves for the optimal implemen-

tation of each forward and backward operator, as well as an efficient checkpointing

schedule.

4.3 Detailed constraints

In this section, we explain some of the constraints used in MONeT’s formula-

tion in more detail.

4.3.1 In-place constraints

We show how to represent the decision of computing an operator using an

in-place or out-of-place implementation. If an operator like ReLU uses an in-place

implementation, its input tensor is overwritten with its output. In this case, its input

tensor cannot be stored or used as input to a computation in this stage. This needs

to be reflected in our constraints. We introduce two new binary variables to model in-

place computations: qki represents if forwardi is recomputed in-place when computing

backwardk. p
k
i represents that the output of forwardi has been computed and will not

be overwritten by any other forward node recomputations in this stage. If qki is true,

then pkj will be false else pkj will be the same as rkj , where j ∈ Ni. Further, sk−1
j will

also be false if qki is true. This can be written in the form of boolean constraints as

follows:

pkj ≥ rkj − 2qki and pkj ≤ 2− 2qki and sk−1
k ≤ 2− 2qki . (4.10)

39

The checkpointing constraint 4.7 changes, with pkj replacing rkj on the RHS.

Further, qki (or pkj) can only be true if forwardi (or forwardj) is actually recomputed

prior to computing backward node k. Thus,

pkj ≤ rkj and qki ≤ rki . (4.11)

4.3.2 Expanded backward pass memory constraints

We formulated the backward peak memory m̂k and recomputation peak mem-

ory m̄k
i as sum of memory of a set of tensors in the previous section. We now expand

the memory formulation and represent it in terms of the optimization variables we

use here:

m̂k =
∑
l

ĉlkδ̂k,l + |yk|+ |L̂k|+
∑
l

δ̂k,l.|Dl
k ∪ Sk−1|

=
∑
l

ĉlkδ̂k,l + |yk|+
∑
yl∈L̂k

|yl|+
∑
l

∑
xi∈Dl

k

δ̂k,l|xi|+
∑
l

∑
xi /∈Dl

k

δ̂k,ls
k−1
i︸ ︷︷ ︸

σk,l,s

|xi|, (4.12)

m̄k
i = ci + |xi|+ |L̂k|+

∑
l

δ̂k,l.|Sk−1
i ∪ L̄k

i ∪Dl
k|

= ci + |xi|+ |L̂k|+
∑
l

∑
j<i:

xj /∈L̄k
i ∪Dl

k

δ̂k,ls
k−1
j |xj|+

∑
l

∑
j<i:

xj∈L̄k
i ∪Dl

k

δ̂k,l|xj|+
∑
j>i

skj |xj|. (4.13)

4.3.3 Complete memory constraints

We present the complete memory constraints which we use for MONeT op-

timization. These constraints include the recomputation variable rki , which was ex-

cluded from the earlier discussion to make understanding simpler. As discussed in

§ 4.2.1, the peak memory of a forwardi recomputation before computing backwardk is

denoted by m̃k
i . This represents the recomputation memory (renamed to mk

Ri) when

forwardi is actually recomputed, that is, rki = 1. When this is not true, the peak

memory (m̃k
Si) only depends on stored checkpoints Sk−1

i , checkpoint dependencies for

40

Dk, and gradient tensors L̂k. Thus,

m̃k
Ri = ci + |xi|+ |L̂k|+ |Sk−1

i ∪ Lk
i ∪Dk|

= rki ci + rki |xi|+ |L̂k|+
∑

j<i:xj /∈Lk
i ∪Dk

sk−1
j |xj|+

∑
j<i:xj∈Lk

i

rki |xj|+
∑

j<i:xj∈Dk−Lk
i

|xj|+
∑
j>i

skj |xj|.

(4.14)

m̃k
Si = |L̂k|+ |Sk−1

i ∪Dk|

= |L̂k|+
∑

j≤i:xj /∈Dk

sk−1
j |xj|+

∑
j≤i:xj∈Dk

|xj|+
∑
j>i

skj |xj|. (4.15)

Local memory Lk can be bounded by L̄k, which gives us m̄k
Ri. To add forward

operator optimizations to m̄k
Ri, we recall the trade-off between workspace memory

and compute time. We replace the workspace memory contributor rki ci in equation

4.14 with
∑

l δ
k
i,lc

l
i.

The complete memory constraints are:

mi ≤ M ∀i and m̂k ≤ M ∀k and m̄k
Ri ≤ M ∀k,i and m̃k

Si ≤ M ∀k,i

(4.16)

4.3.4 Constraint Linearization

The memory constraints we introduce in § 4.2.2 contain quadratic terms in

the form of xi ·xj, with xi, xj ∈ {0, 1}. The quadratic terms cannot directly be incor-

porated into an integer program. However, we can linearize these terms by replacing

each quadratic term xi · xj by an auxiliary variable αi,j ∈ {0, 1} and introducing

additional linear constraints αi,j ≥ xi + xj − 1, αi,j ≤ xi, and αi,j ≤ xj. After this

substitution for all quadratic terms, all constraints in MONeT are linear

4.4 Implementation

We develop MONeT in the PyTorch (v1.5.1) framework. We use PyTorch’s

default Autograd package for backward implementation of elementary functions when

the autograd implementation is stateless. In all other cases, we implement custom

41

forward and backward functions leveraging PyTorch ATen library functions to flexibly

support multiple operators and execution schedules. Each backward operator imple-

mentation is annotated with its computational dependencies, which is generally the

input or the output of its corresponding forward operator. Certain backward opera-

tors implementations may have dependencies on intermediate activations generated

in the forward pass. For example, an intermediate-activated ReLU backward uses

an encoded bit-mask representing the sign of forward operator’s input. We annotate

this as an intermediate storage node and add it to our optimization problem, with a

strict recomputation dependency of the intermediate storage node on its creator node.

Our operator optimizations select from different backward operator implementations,

convolution algorithms, in-place operators etc. We split the convolution backward

operator into two - a parameter-gradient operator followed by an input-gradient oper-

ator. Since the input-gradient operator does not have any computational dependency

on the forward pass, we can aggressively free the forward input tensor right after

the parameter-gradient is computed. We also reuse BatchNorm statistics in case of

their recomputation. For our experiments, we limit ourselves to full precision training

as quantization or lower precision computations introduce additional noise into SGD

and change its convergence properties. We solve the joint optimization problem using

the CVXPY [35, 8] solver with [50] backend.

MONeT workflow. We obtain the forward pass dependencies in MONeT by JIT

tracing a model to obtain its graph. We profile each layer for workspace memory

and compute cost, and obtain memory usage of the tensors from their shape and

type. Note that the workspace memory for many convolution operators in VGG-16 is

greater than 2GB, making it an important factor to model. Unlike prior approaches

like Checkmate, we account for this workspace memory in our optimization problem,

bringing the memory model very close to actual memory allocation. We phrase a

boolean integer programming problem using the generated graph and the profiled

compute cost and workspace memory and solve it using the CVXPY [35, 8] modeling

language and GUROBI [50] solver. The solution is used to generate a schedule that

42

can be run by the MONeT scheduler.

Operator optimizations. We divide operator optimizations according to the dif-

ferent type of implementations they select from.

• Output-activated : Backward calculation of operators like ReLU and BatchNorm

can have computational dependency either on on their forward node’s inputs or

outputs.

• Intermediate-activated : Backward of ReLU has computational dependency on a

1-bit encoding of the sign of its forward node’s input. Backward of MaxPool is

calculated using an intermediate 8-bit output-shaped tensor which contains the

kernel-index of the maximum element.

• Convolution algorithms : We choose from 8 forward and 6 backward cuDNN

convolution algorithms.

• In-place operations : The solver can choose to do in-place computation for op-

erators like ReLU forward. All MONeT experiments enable in-place operation

selection.

4.5 Discussion

4.5.1 Adding operator optimization in other checkpointing frameworks

Adding operator optimization in other checkpointing frameworks is not straight-

forward. We briefly explain the difficulties of including operator selection directly into

existing checkpointing framework - checkmate [59]. We will refer directly to the nota-

tion and equations in the checkmate paper (arxiv v3; 14 May 2020). The most direct

way to incorporate operator selection into checkmate is to introduce an auxiliary

variable Rv
t,i ∈ {0, 1} that refers to re-computing layer i at time t using implemen-

tation v. Most constraints in equation 1 could stay the same, given Rt,i =
∑

v R
v
t,i,

and loss (1a)
∑

t

∑
i

∑
v R

v
t,iC

v
i . Some of our operators produce a different kind of

checkpoint (e.g. binary activated ReLUs), which could be handled in check-mate

by splitting Sv
t,i. The main issues in Checkmate arise in the memory modeling and

43

its relaxations (eq 4,5,7). The memory consumed by a specific checkpoint may de-

pend on the operator implementation: DEPS[k] and USERS[i] both depend on the

operator implementation (output activated, input activated, ...). In short, the check-

mate computation graph is dynamic and depends on operator implementations. The

most direct way to address this is to mem freedt(vk) =
∑

v R
v
t,imem freedt(vk) in an

implementation-dependent way mem freedv
t (vk), and select the right version depen-

dent on the operator used. Likewise, we need to extend FREEv
i,t,k to account for

different operator implementations in Rv
t,k. Likewise, the product in equation (5) will

now go over all implementations Rv
i,j using different USERS sets. This leads to a

linear blowup in the number of constraints, and the number of auxiliary variables,

leading to an at least quadratic expansion on computational costs. Furthermore,

mem freedt(vk) =
∑

v R
v
t,imem freedt(vk) is a quadratic constrain that further needs

to be resolved using additional auxiliary variables. Given that Checkmate already

pushes the limits of current solvers, it is unlikely able to handle this explosion in

constraints and variables, without significant modifications. MONeT on the other

hand represents the compute-graph more compactly and efficiently integrates differ-

ent operator implementations.

4.5.2 Applicability of MONeT to inference workloads

MONeT is mainly meant to reduce the memory usage of model training by not

storing some activations that will be needed in the backward pass and by modifying

implementations of the backward pass operators. It can not reduce the memory of op-

erator parameters, which generally take up the most memory in inference workloads.

MONeT’s checkpointing technique may be used in specific cases where the model has

heavy branching and requires activations to be present until consumed by the last

forward operator. Further, MONeT’s operator optimization technique could be used

to select between different computation sub-graphs (instead of different implementa-

tions of a single operator), in order to reduce workspace memory usage. For example,

a large matrix multiplication may be divided into sequential multiplications and ad-

44

ditions over matrix partitions, and thus has two different operator implementations

that MONeT could select from. However, we expect there to be significant modifica-

tions required in MONeT to accommodate these features. Currently, MONeT does

not support recomputing operations when running the forward pass, nor does it have

the functionality to identify all the different computation sub-graph choices.

4.6 Evaluation

In this section, we use a number of deep networks with varying user-provided

memory budgets to evaluate the memory footprint and compute overhead of MONeT

in relation to state-of-the-art memory saving tools for checkpointing (Checkmate) and

operator-optimizations (Gist). We answer the following questions in this section:

• Does MONeT constrain memory usage when training?

• How does much computation overhead does MONeT incur as compared to other

memory-saving techniques?

• How do enabling different operator optimizations in MONeT impact training

time?

• How much time does MONeT need to solve the joint optimization problem?

• How many constraints and variables are present in MONeT’s joint optimization

problem?

We first describe our experimental methodology and our implementations of the base-

lines before addressing each of the above questions.

4.6.1 Experimental Setup

We evaluate the performance of MONeT against other tools like Checkmate

and Gist on models like ResNet-50, GoogleNet, UNet, VGG-16, and MobileNet-V2.

45

We run our experiments on a 16 GB NVIDIA P100 GPU with the largest input

batch size that fits in the GPU without any optimizations. The UNet experiments

use 608×416 inputs following prior work [59]. All other experiments use 224×224

inputs following conventions [70, 107, 51].

4.6.2 Baseline Implementations

Since Checkmate’s [59] execution engine is built for TensorFlow, and an official

Gist [58] implementation is not available, we reimplement them in PyTorch for our

comparisons.

Checkmate implementation. Our Checkmate implementation is competitive, it

uses the original Checkmate solver and has the same network structure as MONeT.

Checkmate does not optimize for operator implementations like convolutions, so

we show its runtime using the default convolution algorithm (Checkmate-D). For a

stronger comparison, we also show the runtime of a Checkmate schedule that is post-

optimized to greedily run the fastest convolution algorithm (Checkmate-O). Wherever

not explicitly specified, we compare with Checkmate-O. All checkpointing schedules

are run using the same software implementations and costs are profiled on the same

hardware (NVIDIA P100 GPUs). We have released our Checkmate implementation

with the MONeT code.

Gist implementation. Gist [58] is an operator-based memory-efficient scheme for

training DNNs. It encodes stashed forward tensors into smaller tensors which require

less memory. Jain et al. [58] evaluate Gist using CNTK on an Nvidia Maxwell GTX

Titan X GPU. Since we implement MONeT in PyTorch and have access to an Nvidia

P100 GPU, a direct comparison with the numbers in the Gist paper is not possible.

As an official Gist implementation is not available, we reimplement it on PyTorch

and evaluate its execution using MONeT ’s execution framework.

We implement all Gist optimizations — Binarize (intermediate encodings for

ReLU-Pool layers), Sparse Storage Dense Compute (compress and store sparse con-

46

volution inputs in ReLU-Conv layers as sparse storage), Delayed Precision Reduction

(storing stashed non-compressed tensors in FP-16, but computing in FP-32), and

Inplace (performing ReLU operators in-place wherever possible) over MONeT’s ex-

ecution framework. In Gist, the Sparse Storage Dense Compute (SSDC) technique

creates a sparse storage tensor in the Compressed Sparse Row (CSR) representation

using the Nvidia cuSPARSE library. The dense storage is reshaped into a 256-sized

column tensor before storing it in a sparse format, allowing the column index of CSR

representation to be saved in 8 bits instead of using 32 bits (termed Narrow Value Op-

timization in the paper). We also implement SSDC using Nvidia’s cuSPARSE library

(function cusparseSdense2csr) with CUDA Toolkit version 10.1 using PyTorch’s

C++ extensions.

In their paper, Jain et al. [58] use the most memory-efficient convolution algo-

rithms in Gist and compare its memory saving against a baseline which also chooses

the most memory-efficient convolution algorithm. Using memory-efficient convolution

algorithms, our Gist reimplementation can train VGG-16 with 0.55× of the PyTorch-

required memory (1.81× memory footprint), which is close to the data presented by

Jain et al. [58]. However, it is 59% slower than when convolution selection is en-

abled, in which case it can train using 0.76× of the PyTorch-required memory. Since

implementing Gist using memory-efficient convolutions is not optimal in terms of

compute time, we implement Gist to use PyTorch’s convolution selection algorithm.

For all models other than VGG-16 and UNet, we see similar memory savings for Gist

with memory-efficient convolutions and with convolution-selection enabled. We have

released our Gist implementation with the MONeT code.

4.6.3 Constraining memory usage

The main aim of MONeT is to constrain memory usage for deep network train-

ing to within a user-provided memory budget while reducing the compute overhead

that comes as a tradeoff. Figure 4.3 shows the memory usage of a ResNet-50 network

47

0.5

1

1.5

·104
PyTorch (14.7 GB)

MONeT (8.0 GB)

M
em

.
(M

B
)

PyTorch (860 ms)

MONeT (908 ms)

Figure 4.3: Case study on ResNet-50. Memory usage along execution (forward
and backward). MONeT ensures that the model uses at most 8 GB of memory at
any point of time during training.

ResNet-
50

GoogleNet UNet VGG-16 MobileNet-
V2

PyTorch 15.1 14.9 14.3 14.1 14.5

Checkmate [59] 8.2 10.5 9.1 9.9 5.8

MONeT 5.7 6.9 5.2 5.5 4.8

Table 4.2: Memory usage comparison (in GB) for a fixed compute overhead
for Checkmate and MONeT. At 10% compute overhead over PyTorch, MONeT
uses 2-3× less memory than PyTorch. At the same overhead, MONeT can train
models using 1.2-1.8× less memory than Checkmate.

with PyTorch and compares it to MONeT with a memory budget of 8 GB. MONeT

ensures that the memory usage of the network is capped at 8 GB at all times.

4.6.4 Computation overhead

Comparison against checkpointing frameworks. Table 4.2 compares the mem-

ory savings obtained by MONeT and Checkmate for five different models when com-

putational overhead over PyTorch is fixed to be 10%. MONeT schedules use 2-3× less

memory than PyTorch. For the same computational overhead, MONeT uses 1.2-1.8×

less memory than Checkmate.

Figure 4.4 shows detailed runtime-memory trade-offs of MONeT to PyTorch

and Checkmate for different models. We plot the average iteration time of training

as % overhead over PyTorch for MONeT and Checkmate schedules. The memory

budgets range from 5 GB to 10 GB, or equivalently, 0.33× to 0.70× PyTorch memory

48

Figure 4.4: Comparing MONeT with PyTorch and Checkmate. MONeT
reduces memory by 3× compared to PyTorch, with 9-16% compute overhead. It
achieves a better memory-compute trade-off than default Checkmate-D and conv-
optimized Checkmate-O.

VGG-16 (176) ResNet50 (184) GoogleNet (320) MobileNetV2 (256) UNet (11)

mem overhead mem overhead mem overhead mem overhead mem overhead

Gist 0.76 44.34 0.58 105.69 0.52 35.94 0.69 153.98 0.73 38.26

MONeT 0.39 9.11 0.33 11.94 0.33 15.77 0.34 8.80 0.35 11.51

Table 4.3: Memory ratio and overhead (%) over PyTorch for Gist and
MONeT. MONeT obtains 1.4×-2.1× higher memory savings over Gist across mod-
els. The number in parenthesis after the model name shows the batch size.

consumption. The batch size for these models is mentioned in parentheses. For all

models, MONeT reduces memory usage by 3× (0.33 memory ratio) as compared to

baseline PyTorch with 9 − 16% compute overhead. For the same memory budget,

MONeT schedules are up to 34% faster than Checkmate schedules. Note that we

measure the empirical performance of the schedules running on GPUs instead of

just providing a simulation of runtime and memory using the solver values; this is

important since Checkmate does not consider workspace cost and overestimates its

savings.

For networks with individual memory-intensive layers, like VGG-16, operator

optimization becomes even more important for reducing memory; Checkmate can

reduce memory for VGG-16 only up to 7 GB, whereas MONeT with its optimiza-

tions is able to run VGG-16 with 5.5 GB memory. The small runtime improvement

49

of MONeT schedules over PyTorch for VGG-16 and UNet at higher memory bud-

gets is mainly because of choosing faster convolution algorithms. MobileNet-V2 uses

depthwise convolutions and hence does not significantly benefit from joint convolu-

tion optimization. As a result, the performance of MONeT and Checkmate is closer

for MobileNet-V2. We provide additional results for MONeT on a memory-intensive

model, 3D-UNet [29], in Appendix A.3, for which we observe a consistent memory

reduction to 0.54× of PyTorch memory with an overhead of 8.86%.

Comparison against tools for operator-optimizations. Table 4.3 shows the

comparison of MONeT with Gist. While MONeT can determine a range of memory-

runtime tradeoffs, purely operator-optimization-based schemes like Gist only provide

a single memory-runtime data point. For MONeT, we show the memory-runtime

data point with the most memory saving. MONeT uses 1.4×-2.1× less memory than

Gist for multiple architectures while maintaining full precision. Overall, Gist provides

impressive memory savings but incurs a high computation cost to achieve the savings.

While we get similar memory-saving results for reimplemented-Gist as shown

by its authors for VGG-16, our compute overhead results are higher. This could be

because of evaluations on different frameworks (PyTorch v/s CNTK) and different

GPU models (Nvidia P100 v/s Nvidia Maxwell GTX Titan X). Gist uses dense to

sparse conversion using cusparseSdense2csr in one of its techniques. For the first

ReLU-Conv layer in VGG-16 (shape (2207744,256)), this function takes 144ms,

which itself is 10% of the VGG-16 execution time. We see similar results for other

networks. To ensure a fair comparison, we focus on the maximum memory savings

obtained by MONeT with Gist, while reporting the compute overhead for complete-

ness.

4.6.5 Ablation experiments

Figure 4.5 shows additional ablation experiments. We show the % compute

overhead over PyTorch on ResNet-50, GoogleNet, and VGG-16 for different types of

50

Figure 4.5: Ablation results for memory ratio 0.53. Lowest compute overhead
across models is seen only when all optimizations are jointly optimized.

MONeT checkpointing schedules with a memory budget of 8 GB - with no operator

optimizations enabled, with only one type of operator optimization enabled (conv-

optimized, output-activated optimized, intermediate-activated optimized), and with

all optimizations enabled. Schedules which do not jointly optimize convolution algo-

rithms are run with greedily post-optimized convolution algorithm. Plots for other

models look similar to that of ResNet-50 and GoogleNet. The only difference between

’none’ and ’conv’ is that convolution algorithms are jointly optimized in the latter.

However, this fact leads to significant improvement in compute time for all cases.

Similarly, output-activated optimization also provides significant benefits over vanilla

checkpointing, since it effectively reduces the number of recomputations required.

For memory-intensive networks, intermediate-activated optimization becomes more

important. Jointly optimizing all strategies together gives the least computational

overhead. See Appendix A.1 for detailed ablation plots.

4.6.6 Solver time

For our evaluations, we capped the solver time to 24 hours for both MONeT

and Checkmate, and ran the schedule thus obtained on MONeT’s execution frame-

work. At tighter memory budgets for non-linear models like ResNet-50 and GoogleNet,

Checkmate is unable to find a feasible solution within a couple of hours. In con-

trast to Checkmate, MONeT finds the execution plans efficiently. For all the models

and memory limits that we evaluate, MONeT reaches a 5% close-to-optimal solution

51

5 GB 6 GB 7 GB 8 GB 9 GB 10 GB

ResNet-50

Checkmate - 8.96 12.01 10.78 4.54 2.98

MONeT-NoOp 1.18 0.46 0.14 0.09 0.06 0.07

MONeT 7.24 3.84 0.73 0.70 0.31 0.11

GoogleNet

Checkmate - 12.72 4.56 4.32 3.92 0.86

MONeT-NoOp 0.10 0.11 0.07 0.07 0.07 0.07

MONeT 3.53 0.47 0.54 0.31 0.25 0.24

MobileNet-V2

Checkmate 2.16 2.88 1.16 0.29 0.34 0.14

MONeT-NoOp 0.11 0.04 0.02 0.02 0.04 0.08

MONeT 0.37 0.28 0.52 0.05 0.06 0.03

UNet

Checkmate 0.149 0.031 0.022 0.020 0.010 0.009

MONeT-NoOp 0.048 0.002 0.002 0.002 0.002 0.002

MONeT 0.363 0.064 0.028 0.027 0.024 0.006

VGG-16

Checkmate - - - 0.002 0.002 0.001

MONeT-NoOp - - - 0.001 0.000 0.000

MONeT - 0.003 0.003 0.003 0.003 0.003

Table 4.4: Solver time (in hours) to reach 5% close to optimal solution.
MONeT-NoOp reaches a 5% close-to-optimal solution 1.6×-117× faster than Check-
mate. MONeT gets close to 5% of the optimal solution only in a few hours, and up-to
16× faster than Checkmate for larger models.

within a few hours or sometimes even minutes. Table 4.4 shows the time it takes

for the solver to reach 5% close to the optimal solution, for Checkmate, MONeT-

NoOp (MONeT with checkpointing enabled but operator-optimization disabled), and

MONeT. MONeT-NoOp converges to a close-to-optimal solution 1.6×-117.4× faster

than Checkmate. For larger models, MONeT’s solver converges to a close-to-optimal

solution up to 27× faster than Checkmate. Note that running a solver is a one-time

cost for a model - once a MONeT schedule has been solved for, it can be used by

everyone to train the model for different purposes with different batch sizes. The cost

(typically seconds to hours) is tiny compared to the efforts and costs to develop a

model for distribution in most cases. We also discuss the time taken by the solver to

reach 2% close to the optimal solution in Appendix A.2.

52

Checkmate MONeT-NoOp MONeT

Fwd
ops

ConstraintsVariables ConstraintsVariables ConstraintsVariables

GoogleNet 215 719,327 519,252 221,630 104,673 781,747 362,640

ResNet-50 175 473,592 344,659 344,652 167,238 487,842 229,431

Mobilen.V2 153 337,316 247,033 153,828 74,579 241,478 115,047

UNet 67 65,715 48,744 32,273 15,982 73,624 36,548

VGG-16 40 25,334 18,968 12,772 6,306 21,918 11,234

Table 4.5: ILP statistics for Checkmate, MONeT-NoOp, and MONeT.
MONeT-NoOp has on average 50% fewer constraints and 67% fewer variables than
Checkmate. MONeT has a slightly higher number of constraints, on average 40%
fewer variables than Checkmate.

4.6.7 ILP statistics in MONeT’s formulation

For different models, Table 4.5 shows the solver statistics after presolving for

the problem formulated by Checkmate, MONeT-NoOp, and MONeT for a 10 GB

memory limit. It shows the number of forward operators in the model and the number

of constraints and variables for each solver. MONeT-NoOp, which is MONeT with

only checkpointing enabled and without using operator optimization, has on average

50% fewer constraints and 67% fewer variables than Checkmate. Jointly-optimized

MONeT has a slightly larger number of constraints and on average 40% fewer variables

than Checkmate. MONeT’s formulation is more efficient and might be the reason that

it reaches a good solution faster than Checkmate.

4.7 Summary

In this chapter, we presented MONeT, a framework to automatically reduce

memory requirements for training deep networks. MONeT jointly optimizes lo-

cal (operator-level) and global (graph-level) optimizations to yield a compute- and

memory-efficient checkpointing schedule. MONeT reduces memory usage by 3× over

PyTorch, with a 9 − 16% compute overhead. It uses 1.2-1.8× less memory than

the state-of-the-art automated checkpointing framework for the same computational

cost. Experimental results show that MONeT leads to better memory-computation

53

trade-offs compared to the state-of-the-art. MONeT is open-source and available at

https://github.com/utsaslab/monet.

54

https://github.com/utsaslab/monet

Chapter 5: TACCL: Guiding Collective Algorithm

Synthesis using Communication Sketches

In Chapter 3, we discussed how GPUs communicate with each other over

the network using MPI-style communication collectives in distributed deep learning.

We looked at some existing libraries for collective communication and discussed the

challenges they face in building collective algorithms for heterogeneous hardware and

different input sizes.

In this chapter, we present TACCL, a semi-automated tool that enables algo-

rithm designers to guide a synthesizer into generating efficient collective algorithms for

a given hardware topology and communication collective 1. TACCL uses a novel ab-

straction of communication sketch and a novel formulation of the algorithm-synthesis

problem in order to scale beyond single-node topologies.

First, we present the goals of TACCL (§ 5.1) and motivate TACCL’s core

components (§ 5.2). We briefly explain how TACCL models the physical topology of

the GPU systems (§ 5.3). We then describe its design (§ 5.4) and problem formula-

tion (§ 5.5) in detail, and discuss the implementation of TACCL’s backend (§ 5.6).

Finally, we evaluate TACCL against an existing state-of-the-art library for collective

communication (§ 5.8).

5.1 Goals

Efficient collectives. TACCL should be able to generate fast and efficient collective

communication algorithms.

Scalability. TACCL should be able to generate collective algorithms for multi-node

1This Chapter is based on the work, TACCL: Guiding Collective Algorithm Synthesis using
Communication Sketches, published in NSDI’23 [104]

55

topologies.

Generality across different topologies. TACCL should be applicable for different

kinds of hardware topologies.

Data-size awareness. TACCL should be able to generate collective algorithms that

perform well for the expected size of data transfers.

5.2 TACCL components

In order to generate efficient collectives, we need to first identify the physical

topology and link profiles and then determine the route and schedule that data chunks

should take. The search space of possible algorithms to implement a collective is

intractably large and cannot be explored via brute force. Deciding whether or not to

route data chunks from n GPUs over l links in a topology has O(2n×l) combinations.

As we scale to multi-node topologies, n as well as l will also scale, increasing the

exponent quadratically. The search space explodes further if we consider the problem

of ordering data sends at each link along with deciding routing for the data. We

argue that high-level inputs from a human algorithm designer help reduce the search

space to make algorithm synthesis more tractable. In the most extreme case, the

user would hand-write the entire algorithm. However, handcrafting data routing and

scheduling over links to implement a collective is complex and requires many design

choices. Instead, users can provide input in the form of an intuitive communication

sketch around which a collective algorithm can be synthesized. It is important to

ensure that providing inputs to TACCL is a low-effort activity, but can discard large

parts of the search space to achieve improvements in running time of the synthesis

engine.

TACCL synthesizes a collective algorithm by deciding the route that each data

chunk in the collective should take in the topology as well as the ordering of chunks

at every link. Even with communication sketches that reduce the search space for the

56

synthesizer, this decision problem is NP-hard and the complexity increases exponen-

tially with the number of GPUs. To make the problem more tractable, we first relax

the synthesis problem to solve just the routing of all data chunks and then heuris-

tically order chunks sent over the same links according to bandwidth constraints.

TACCL’s synthesizer design along with communication sketches help TACCL syn-

thesize efficient collectives for multi-node topologies.

5.3 Physical Topologies of GPU systems

In order to effectively sketch algorithms for TACCL to synthesize, algorithm

designers must understand the physical topology of the target multi-GPU system.

However, the performance characteristics of their heterogeneous links are sparsely

documented and for some cloud offerings [9] even the topology is not given. To

address this, TACCL includes a physical topology profiler to measure performance

characteristics of links and to disambiguate the topologies of some multi-GPU sys-

tems.

α-β Cost Model and Link Profiling. TACCL uses the well-known α-β [52] cost

model to model link performance. α is the latency of a link and β is the inverse of its

bandwidth. The cost of sending a chunk of size s along a link is α+β ·s. α and β are

affected by both the interconnect hardware as well as the software stack running the

collective algorithm. TACCL helps users select these values with a link profiler, which

measures and infers the α and β costs of different types of links in GPU systems.

The profiler empirically derives the α and β parameters of different links in

the network by performing peer-to-peer data transfers between GPUs. We send n

chunks one after another on a link and measure the time to transfer. As per the α−β

cost model, the time to transfer is n · (α + β · s). We then send n chunks all at once

on the link and attribute that time to be α + n · β · s. Using several measurements

of time to transfer, we solve for α and β. Table 5.1 shows the α and β values for

NDv2 and DGX-2 systems. Using these values, we expect that for transfers between

57

Azure NDv2 Nvidia DGX-2

Link α
(us)

β
(us/MB)

α
(us)

β
(us/MB)

NVLink 0.7 46 0.7 8

InfiniBand 1.7 106 1.7 106

Table 5.1: Experimentally obtained α and β costs for Azure NDv2 and Nvidia DGX-2
nodes.

two Azure NDv2 nodes over InfiniBand (IB), sending two 32 KB chunks together as

a single 64 KB chunk will be 17% faster as compared to sending two 32 KB chunks

one after the other.

Inferring Multi-GPU Topologies In many cases, the physical topology for the

multi-GPU system may not be known or may be hidden due to virtualization. TACCL

helps determine the topology of the system with a topology profiler.

For example, consider the use-case of in Azure NDv2 systems. Their physical

topology is not fully documented: while the NVLink topology (Figure 3.2) is known

to match that of Nvidia DGX1, the details of how GPUs and the one 12.5 GBps Infini-

Band NIC are connected with PCIe is not known. PCIe peer-to-peer communication

(and thus GPUDirect RDMA [4]) is not enabled on these machines, meaning that all

communication happen through buffers in CPU memory over potentially shared PCIe

links. Further, virtualization obscures the true PCIe topology (all 8 GPUs and the

NIC appear directly connected to one CPU) and NUMA node and GPU IDs are not

assigned consistently from VM to VM. This means that, without additional informa-

tion, software cannot avoid contention over shared PCIe links, creating interference

and high variance in performance.

To determine the PCIe topology, TACCL’s profiler sends bandwidth and la-

tency probes between the two CPUs and between pairs of GPUs. It answers the

following questions:

• Which CPU is nearest to the NIC? We find this by the latency of loopback

RDMA operations to each CPU.

58

Communication Sketch

Profiled Topology

Target Collective

Algorithm
ImplementationRouting Heuristic

Ordering
Contiguity and

Exact Scheduling

Synthesizer

Hyperparameters

Backend

Figure 5.1: TACCL workflow. TACCL’s novel synthesizer takes as input a com-
munication sketch, profiled topology, and target collective along with synthesizer
hyperparameters to generate an algorithm for the collective. The synthesized algo-
rithm is implemented on the hardware cluster using TACCL’s backend.

• Which GPUs share a PCIe switch? We find all pairs of GPUs that get low

bandwidth in a simultaneous copy to the CPU, indicating contention.

• Which GPUs share a PCIe switch with the NIC? We find which GPUs get low

bandwidth in copies from the CPU closest to the NIC while it is doing an RDMA

loopback copy between buffers on the CPU.

With this profiling information we were able to deduce the PCIe topology

(Figure 3.3) of Azure NDv2 systems. Each CPU has two PCIe switches connecting

to two GPUs each, and the InfiniBand NIC is connected to one of these switches.

Additionally, by running the profiler on every new NDv2 VM TACCL is able to select

one of the NVLink topology’s four automorphisms and set the CUDA VISIBLE DEVICES

environment variable such that the NIC is always placed close to GPU 0.

5.4 Design

Figure 5.1 shows an overview of TACCL’s design. We introduce communica-

tion sketches as a new form of sketching [110] that serve as an effective tool for users

to communicate interesting aspects of collective communication algorithms to syn-

thesis backends. TACCL’s novel stage-wise synthesizer takes in the communication

sketch, a profiled hardware topology, and the target collective as input and outputs a

collective algorithm that is lowered into an executable format by TACCL’s backend.

In this section, we will discuss the two main components of TACCL - communication

59

sketches and synthesizer - that enable it to generate efficient collective algorithms for

large-scale topologies.

5.4.1 Communication Sketches

Sketching approaches must strike a balance between allowing users to omit

implementation details while still providing enough direction for the synthesis to scale.

In our experience, routing is an aspect of collective communication that we often have

intuitions about, while reasoning about scheduling tends to be tedious and better left

to synthesis. Moreover, properties about scheduling are routing dependent since the

order of operations is only relevant when routes intersect, which makes them harder

to express. Meanwhile, interesting properties about routing are expressible globally,

e.g., “never send over InfiniBand from this GPU”. We thus ask the algorithm designer

(user) for three low-effort inputs as a part of the communication sketch:

1. Specifying the logical topology as a subset of the actual physical topology that

the algorithm will operate on. For example, the outgoing links of all but one

GPU can be removed in the logical topology to force all data going to remote

GPUs to be relayed through one GPU.

2. Annotating switches inside the topology for the synthesizer to take certain

switch-hyperedge policies.

3. Providing algorithm symmetry based on the symmetries in the topology and

the collective.

We explain each part of the communication sketch below and provide an example of

a sketch written for TACCL.

Logical Topology. The core of TACCL’s communication sketches is a logical topol-

ogy, a subset of the physical topology in which the user may omit links that they

wish the routing to avoid. As a result, a logical topology has as many nodes as the

60

Figure 5.2: Multi-connection with varying number of GPU neighbors and data vol-
ume.

physical topology. A logical topology inherits the cost model produced by TACCL’s

profiler for the physical topology. A logical topology omits NICs and switches and

uses switch-hyperedges, abstracting them away into links between GPUs. The reason

is twofold: TACCL runtime is embedded inside NCCL runtime and NCCL has no

direct control over NIC or switch use, and it allows TACCL to reason over a smaller

graph thus enhancing scalability. We discuss the implications of this later in this

section.

Example 5.4.1 (Distributed sketching for NDv2 clusters). For distributed collective

communication with NDv2 systems, some PCIe connections must be used since the

NIC is connected to GPUs over PCIe (Figure 3.3). Care must be taken in choos-

ing which links to use, as some PCIe links are oversubscribed and due to lack of

GPUDirect RDMA [4] on these systems, all communication must pass through host

memory. Obtaining maximum throughput systems requires a logical topology that

avoids conflicting flows on the oversubscribed PCIe links. To build a logical topology

for a cluster of NDv2 systems, a pair of receiver and sender GPUs is selected for each

NDv2 such that the selected GPUs and the NIC are connected to the same PCIe

switch.

Switch-Hyperedges. In a switched fabric with full bisectional-bandwidth, like the

NVSwitch or IBSwitch fabrics in DGX-2 and NDv2 systems, nodes can simultaneously

communicate at the full bandwidth of their ingress or egress links. However, as

the number of connections through a switch, originating from a single GPU or NIC

61

increases, the resulting queuing delays increase the latency. Figure 5.2 plots the

accumulated ingress/egress bandwidth of exchanging varying volume of data (up-

to 200-400 MB) for different number of connections over NVSwitches in a DGX2

node (left) and over IBSwitches among four DGX2 nodes (right). In both cases,

the bandwidth drops as the number of connections increases despite the volume of

data remaining constant. However, for small input sizes, the difference for different

number of connections is not significant. In TACCL, a logical topology does not model

switches and therefore, the effect of number of connections cannot be captured.

TACCL addresses this performance impact by switch-hyperedges in the synthe-

sizer as a way to control the number of connections to between GPUs and switches.

A switch-hyperedge replaces a switch by a set of direct links in a logical topology

that will be imposed for the entire runtime of an algorithm. Note that the synthe-

sizer still has the freedom to search over which direct links it will impose. To control

the number of direct links for each switch-hyperedge, TACCL provides three policies

for a user: (1) maximize the number of links (uc-max), (2) minimize the number of

links (uc-min), and (3) ignore freely choose any number of links. These policies are

enforced by adding the number of unique connections over the switch to the objective

function.

Example 5.4.2 (Sketching for congestion). Figure 5.3 shows a physical topology of

three GPUs connected by a switch, where each GPU can communicate with any other

GPU.

Figure 5.4 shows a logical topology with a switch-hyperedge that TACCL may

choose with maximizing number of connections policy. This is desired for small data

sizes that result in low likelihood of congestion at the switch with large number of

connections as Figure 5.2 shows.

In Figure 5.5 TACCL has minimized number of connections, which effectively

results in a Ring topology. This is more desired for larger data sizes, as restricting

the number of logical connections limits the congestion in the switch (Figure 5.2).

62

GPU0 GPU1

GPU2

Switch

Figure 5.3: Physical topology with a switch

GPU0 GPU1

GPU2

Switch

Figure 5.4: Connections with maximiz-
ing strategy

GPU0 GPU1

GPU2

Switch

Figure 5.5: Connections with minimiz-
ing strategy

Algorithm Symmetry. Many collective communication algorithms are symmetric

in a variety of ways. For example, ring algorithms follow a ring symmetry or in

hierarchical algorithms, the local phases inside all machines are symmetric to each

other. Inspired by this, TACCL offers a generic way to enforce algorithms to be

symmetric.

The user may enforce a symmetry by supplying an automorphism of the logical

topology and collective, i.e., a permutation of the ranks and chunks that maintains the

structure of the topology and the collective pre- and post-conditions, and a partition

of the ranks such that the automorphism maps each subset of ranks to some subset

of the partition. TACCL will then restrict synthesis to algorithms with the same

symmetry for all chunk transfers.

Example 5.4.3. Consider a cluster of two NDv2 systems and the task of synthesizing

an Allgather. A hierarchical symmetry may be specified with an automorphism

composed of a the permutation [8, . . . , 15, 0, . . . , 7] for both chunks and ranks, and a

63

partition {{0, . . . , 7}, {8, . . . , 15}}. Now if an algorithm performs a send of chunk 0

from rank 0 to rank 1, then it must also include a send of chunk 8 from rank 8 to

rank 9. However, sends between GPUs in different NDv2s, e.g., between 0 and 8, are

not affected by the symmetry.

Since the internal topologies of NDv2 systems are identical, enforcing this sym-

metry is reasonable and helps TACCL scale to larger distributed topologies. Mean-

while, TACCL still has the freedom to synthesize the top-level algorithm and connect

the systems to each other as it best can.

Writing a communication sketch. A communication sketch comprises of a logi-

cal topology, switch-hyperedge strategy, symmetry information, input size, and other

hyperparameters. We give an example of how users can provide an intuitive commu-

nication sketch input to the TACCL synthesizer in Appendix B.1.

5.4.2 Synthesizer

Once the user has written a communication sketch, they are ready to call

TACCL’s synthesizer. This section describes the synthesis process TACCL uses, as

well as additional hyperparameters available to the user.

GPUs participating in a communication collective partition their initial data

into C equal chunks where C is a hyperparameter selected by the user. TACCL’s

synthesizer routes and schedules these chunks. Given a communication sketch and

a collective, the synthesizer decides chunk transfer schedules across every link in

the network, such that each chunk reaches its destination GPUs as specified by the

collective.

TACCL encodes this problem as a mixed integer linear program (MILP) with

binary and continuous decision variables. The encoding has a continuous variable

called start time for every chunk and GPU to indicate when a chunk is available at a

GPU. A binary variable is sent for all chunk and link pairs denotes if a chunk is sent

64

over a link. Another continuous variable send time indicates when a chunk is sent

over a link. The encoding has bandwidth and correctness constraints to ensure the

correctness of a chunk transfer schedule. The objective of the MILP is to minimize

time which is a continuous variable indicating the maximum time among all chunks

that must reach their destination GPUs.

Additionally, TACCL’s synthesizer also decides if it should merge some chunks

and transfer them contiguously as one large buffer over a link. Sending n chunks

contiguously in one send instruction over a link requires paying only one α latency

cost whereas sending n chunks one after the other requires paying n×α latency costs.

Note that this does not change the β bandwidth cost. However, sending n chunks

separately over a link enables TACCL to order them such that subsequent dependent

sends from the destination of the link could be scheduled earlier. TACCL’s synthesizer

navigates this trade-off to minimize the time. TACCL uses this feature only for IB

transfers due to their high α cost and ignores it for NVLinks due to their lower latency.

MILP problems in general are NP-hard. Luckily, there are solvers such as

Gurobi [50] that apply heuristics to solve MILPs in a feasible way. However, this re-

quires careful consideration regarding the number of variables and constraints in the

formulation. In TACCL’s formulation, transferring chunks over a link cannot overlap

and an ordering among them is required. Therefore, potentially a binary decision is

needed for every pair of chunks that may traverse a link. If we assume there are C

chunks for a collective problem, there are O(C2) such decisions per link. Moreover,

as the number of nodes increase, the number of links increase linearly (larger topol-

ogy) and the number of chunks for a collective increases linearly (Allgather) or

even quadratically (Alltoall). This large set of variables and constraints leads to

infeasible solver time and memory requirements.

To solve this problem, we divide the synthesis into three parts. First, the

synthesizer solves an optimization problem to determine the path used by every chunk

without fixing any ordering among chunks, then it heuristically orders the chunks over

65

every link, and finally, it solves another optimization problem to determine chunk

contiguity. Complete formal descriptions of each step are discussed later in § 5.5.

Step 1: Routing solves a MILP for finding the path of each chunk independent

of other chunks, allowing chunks sent over a link to overlap. The objective of this

MILP is to minimize the time, which we constrain to be the maximum of two sets of

variables. (1) for each link, the number of chunks that traverse that link multiplied

by the transfer time of a chunk over that link. (2) for the path of each chunk, the

summation of transfer times of the chunk along every link in the path. Note that this

is only a lower bound on the time since we do not consider link contention or chunk

ordering. According on the terminology introduced by Leighton, Maggs, and Rao in

their seminal paper [72] that studied the issue of scheduling packets given their paths,

our first variable provides a measure of congestion and our second variable provides

a measure of dilation. In that paper, the authors proved that for store-and-forward

packet routing, it is possible to schedule data transfers in O(C +D) time when given

paths with congestion C and dilation D. Inspired by this, we obtain paths that

minimize both congestion and dilation.

TACCL also constrains each chunk’s path to be via GPU ranks that are on the

shortest paths from their sources to their destinations using the links the user decided

to include in the logical topology. If the communication sketch specifies an algorithm

symmetry, TACCL adds the constraints for the symmetric sends. Replacing switches

with switch-hyperedges is also applied in this step. For each switch-hyperedge, a

user-provided policy on the number of unique connections to/form a switch is applied.

TACCL can also add switch-hyperedge policies on its own based on the chunk size -

if the chunk size is larger than 1 MB, TACCL uses uc-min strategy, and otherwise

uses uc-max.

TACCL uses Gurobi [50] to solve this MILP and the solution gives every chunk

a start time for each GPU along its path. Clearly this step solves chunk routing, but

only partially solves the chunk scheduling and contiguity problem and requires follow-

66

up steps (explained next) to account for ordering the chunks sent over a link as well as

minimizing α costs of sends. However, by using this technique, TACCL’s synthesizer

is able to reduce binary variables needed from O(C2) to O(C) per link.

Step 2: Heuristic Ordering decides the chunk ordering sent on each link based

on a heuristic. Note that this step is not an MILP and solely solved by a greedy

algorithm. Regardless of when each chunk becomes available at a GPU, this step

assigns a total order on the chunks sent over a link l = (src, dst). This is decided by

two heuristic functions. (1) chunks which need to traverse the longest path from src

to their final GPU, have higher priority. (2) In case there is tie in (1), chunks which

have traversed the shortest path from their initial GPU to src, have higher priority.

This ordering will be used in Step 3 to assign the final schedules.

Step 3: Contiguity and Exact Scheduling solves an MILP problem to decide

which chunks to send contiguously and gives the exact schedule. The path to be taken

by chunks and their ordering over links have already been determined by the previous

steps which are added as constraints to this MILP. The start time and send time

variables are reassigned in this step by considering both the α and β costs for each

transfer. In this step, the synthesizer allows either sending one chunk at a time or

sending multiple chunks contiguously. This offers a trade-off between (1) sending the

chunks that are available at the same time for a link according to the ordering in step

2 so that the subsequent sends can be scheduled earlier or (2) sending the chunks

contiguously in one send instruction to save the latency cost. The objective of this

MILP is to minimize the total time by enforcing all constraints which in TACCL

solved by Gurobi [50]. The solution gives the exact schedule for each chunk.

Synthesizer Hyperparameters.

TACCL’s synthesizer has some additional parameters that control the synthe-

sis process. These are provided by the user to the synthesizer through the communi-

cation sketch.

67

• Buffer Size: TACCL needs the size of input/output buffers of a collective for

the α-β cost model. In ML workloads the input/output buffer size is a known

fixed value.

• Chunk Partitioning: The data buffer at each GPU at the start of the collective

can be partitioned into multiple equal chunks. Each chunk is considered as an

atomic scheduling unit by the synthesizer and different chunks of the same data

buffer can be routed over different links. The semantics of a collective forces a

minimum number of chunks such as Alltoall which needs at least as many

chunks as the number of GPU for each buffer. On one hand, using the minimum

number of chunks is often times ideal for finding latency-optimal algorithms.

On the other hand, providing a higher number of chunks allows the synthesizer

to better utilize the links that might be idle otherwise which is better for finding

bandwidth-optimal algorithms.

5.5 Synthesizer Formulation

As explained earlier, TACCL’s synthesizer has routing, heuristic ordering, and

contiguity and exact scheduling stages. We provide a detailed description of each

of these stages in this section. We first formally introduce some terms that we will

use later. Let C denote the set of chunks that are required to be routed in the

algorithm for collective coll. Let R denote the set of GPU ranks involved in coll. Let

coll.precondition and coll.postcondition denote the precondition and post-condition

of the collective respectively.The tuple (c, r) ∈ coll.precondition, c ∈ C, r ∈ R, if

chunk c is present at rank r at the start of the collective. Similarly, the (c, r) ∈

coll.postcondition if chunk c has to be present at rank r at the end of the collective.

Further, let L denote the set of links, such that (r1, r2) ∈ L, r1 ∈ R, r2 ∈ R if there

exists a link from rank r1 to rank r2 in the logical topology determined by the topology

and communication sketch. Let Ssend
r denote the set of switched destinations for rank

r, such that dst ∈ Ssend
r if link (r, dst) is a part of a switch-hyperedge. Similarly, Srecv

r

68

denotes the set of switched sources for rank r, such that src ∈ Srecv
r if link (src, r)

is a part of a switch-hyperedge. α(r1, r2), β(r1, r2) are the alpha and beta costs

respectively of the link (r1, r2) ∈ L. The term lat(r1, r2) is the sum of α(r1, r2) and

β(r1, r2) cost of the link, which denotes the total transfer cost of a single chunk over

link (r1, r2). Table 5.2 lists the variables that the TACCL’s synthesizer solves for.

We will describe each variable in detail in this section.

5.5.1 Routing

The main aim of the routing stage is to give us the path that every chunk

takes in the collective. Our objective is to minimize the time (denoted by continuous

variable time) it takes to reach the post-condition of the collective.

Minimize time (5.1)

The time taken for the collective algorithm is the latest time at which a chunk

becomes available on a rank that is in the post-condition of the collective. We use a

continuous variable start[c, r] to denote the time that chunk c becomes available on

rank r, and end up with the following constraints for time

time ≥ start[c, r] ∀(c, r) ∈ coll.postcondition (5.2)

For chunks on ranks that belong to the collective’s precondition, we set the

start time to zero.

start[c, r] = 0 ∀(c, r) ∈ coll.precondition (5.3)

We also add correctness constraints in our formulation for routing - chunks are

sent from a GPU rank only after they have been received on that rank. We introduce

a continuous variable send[c, src, r] to denote the time of sending chunk c from rank

src to rank r and add the following constraint to our formulation:

send[c, src, r] ≥ start[c, src] ∀c ∈ C ∀(src, r) ∈ L (5.4)

69

We use a binary variable is sent[c, src, r] to indicate if chunk c is sent over

the link (src, r) in our algorithm. We note that the routing stage does not strictly

respect bandwidth constraints of any link - the generated solution may send two

chunks simultaneously over a link at the time cost of one chunk. The chunk start time

on a rank will be determined only by the chunk send time on the source, independent

of other chunk transfers on the link (eq. 5.5). LHS→RHS in the equation signifies an

indicator constraint, i.e., if LHS is 1, RHS will hold.

is sent[c, src, r]→start[c, r] = send[c, src, r] + lat(src, r)

∀c ∈ C ∀(src, r) ∈ L
(5.5)

Instead of bandwidth constraints, this encoding uses relaxed bandwidth constraints.

They are expressed by aggregating the link transfer time of all chunks sent over a link

and using it to to lower bound the total time of the algorithm (eq. 5.6). For switched

connections, the total time is lower bounded by the sum of link transfer times of all

chunks sent over all switched outgoing links from a source, and also by the sum of

link transfer times for chunks received from all incoming links to a destination (eq. 5.7

and eq. 5.8).

time ≥
∑
c∈C

(lat(src, r) ∗ is sent[c, src, r]) ∀(src, r) ∈ L (5.6)

time ≥
∑
c∈C

∑
dst∈Ssend

r

(lat(r, dst) ∗ is sent[c, r, dst]) ∀r ∈ Ssend (5.7)

time ≥
∑
c∈C

∑
src∈Srecvr

(lat(src, r) ∗ is sent[c, src, r]) ∀r ∈ Srecv (5.8)

Based on the communication sketch, we also add constraints for uc-max and

uc-min strategies for switch-hyperedges to maximize and minimize the number of

links utilized in a switch respectively. We introduce a new binary variable is util[src, r]

for links (src, r) that are a part of a switch-hyperedge. This variable is 1 if any chunk

is sent over link (src, r), and 0 otherwise.(eq. 5.9 and eq. 5.10). According to the

switch-hyperedge strategy, we add this variable, weighted with a small constant γ, to

the objective function (eq. 5.11). γ is negative for uc-max and positive for uc-min.

70

is util[src, r] >= is sent[c, src, r] ∀c ∈ C∀(src, r) ∈ L (5.9)

is util[src, r] <=
∑
∀c∈C

is sent[c, src, r] ∀(src, r) ∈ L (5.10)

Minimize time+ γ × (
∑

(src,r):switched links

is util[src, r]) (5.11)

We also add symmetry constraints according to the symmetry offsets provided

by user in the communication sketch. For a chunk c and link (src, r), we identify a

rotationally symmetric chunk ĉ and link (ˆsrc, r̂) and add the following constraints:

start[c, r] = start[ĉ, r̂] (5.12)

send[c, src, r] = send[ĉ, ˆsrc, r̂] (5.13)

is sent[c, src, r] = is sent[ĉ, ˆsrc, r̂] (5.14)

Further, for chunks that start on one node and have a final destination on

another node, we add inter-node transfer constraints which specify that at least one

inter-node link will be used to transfer that chunk.∑
(r1,r2)∈L:r1∈node1,r2∈node2

is sent[c, r1, r2] ≥ 1 (5.15)

5.5.2 Ordering Heuristics

We start the heuristic ordering by determining the paths each chunk takes

using the solution of the path encoding. We then consider the first link in every

path as a candidate for scheduling a chunk transfer. Using heuristics like chunk-with-

shortest-path-until-now-first and chunk-with-longest-path-from-now-first, we select a

71

MILP Variables Explanation

Routing

time time spent in the collective algorithm

start[c, r] time at which chunk c becomes available at GPU r

send[c, src, r] time at which chunk c is sent from GPU src to GPU r

is sent[c, src, r] indicates if chunk c is sent from GPU src to GPU r

is util[src, r] indicates if any chunk is sent from GPU src to GPU r

Contiguity

is together[c, o, r] indicates if chunks c and o are sent to GPU r together
from the same source, thus sharing the bandwidth and
reducing the latency cost of transfer

Table 5.2: Variables used in TACCL’s MILP formulation. Variables with prefix is
are binary variables and others are continuous variables.

path (and thus a chunk) which should be scheduled in this round. We keep a running

estimate of link time, which is the earliest time at which a chunk can be scheduled

over the link. We also keep a running estimate of chunk time, which is the earliest

time at which the next link transfer can be scheduled for a chunk. At the start,

the link time for every link is 0 and the chunk time for every chunk is 0. When a

path is chosen in the first round, the chunk associated with the path is scheduled

to traverse the first link in the path. The link time of that link increases by link

latency and chunk time of that chunk increases by link latency. The link candidate

from the selected path is also updated to be the next link in the path. For the next

rounds, we decide which path’s candidate link to schedule next using the tracked link

and chunk times along with the scheduling heuristics. This keeps going until we have

scheduled a data transfer over all the links in all the paths. We find that the best

heuristics differ for architectures with NVLinks and those with NVSwitches, in terms

of whether to start selecting links to schedule in the same order as the paths or in the

opposite order of the paths. The heuristic ordering has the following three outputs:

• chunk order(r1, r2), an ordered list of chunks transferred along each link (r1, r2).

If chunk c1 is present before chunk c2 in chunk order(r1, r2), it denotes that c1

is scheduled to be sent before c2 over link (r1, r2).

72

• switch send order(r), an ordering on the chunks sent from a switch source r to

any of the switch destinations dsts. If (c1, dst1) is present before tuple (c2, dst2)

in switch send order(r), it means that a send of c1 over link (r, dst1) should be

scheduled before a send of chunk c2 over link (r, dst2).

• switch recv order(r), an ordering on the chunks received on a switch destination

r from any of the switch sources srcs. If (c1, src1) is present before tuple

(c2, src2) in switch recv order(r), it means that a receive of c1 over link (src1, r)

should be scheduled before a receive of chunk c2 over link (src2, r).

5.5.3 Contiguity and Exact Scheduling

Finally, we describe the formulation for the contiguity and exact scheduling

stage. Given the link and switch ordering from the heuristic ordering stage, the aim

of this stage is to find the sweet spot in the trade-off between lower link latency by

sending multiple data chunks contiguously as a big data chunk and reduced pipelining

benefits due to the big data-chunk transfer. We provide the main set of constraints

in our formulation below, leaving out other less important constraints.

Our objective is still to minimize the time of the collective and constraints

eq. 5.1-eq. 5.4 must still hold in this formulation. We add a new binary variable

is together(c1, c2, r) for all chunks c1 and c2 that are sent over the same link to rank

r. If is together(c1, c2, r) is 1, chunks c1 and c2 are sent as a single data-chunk over

a link to rank r.

is together[c, o, r]→send[c, src, r] = send[o, src, r]

∀c, o ∈ chunk order(src, r) ∀(src, r) ∈ L
(5.16)

The transfer time of a data chunk c along a link (src, r) will be determined by all

other data chunks that it has to travel together with:

lat[c, src, r] =α(src, r) + β(src, r)∗

(
∑

o∈chunk order(src,r)

is together[c, o, r])

∀c ∈ chunk order(src, r) ∀(src, r) ∈ L

(5.17)

73

start[c, r] =send[c, src, r] + lat[c, src, r]

∀c ∈ chunk order(src, r) ∀(src, r) ∈ (L)
(5.18)

We also add strict bandwidth constraints for this formulation, allowing only

one data chunk per link transfer time if the data chunks are not sent contiguously over

the link. Let pos(c, src, r) determine the position of chunk c in the chunk order(src, r),

then

¬is together[c, o, r]→send[o, src, r] ≥send[c, src, r]

+lat[c, src, r] ∀c ∈ chunk order(src, r)

∀o ∈ chunk order(src, r)

if pos(o, src, r) ≥ pos(c, src, r) ∀(src, r) ∈ L

(5.19)

Similarly, we add bandwidth constraints for switch, allowing a source to send

data to only one switched destination at a time, and a receiver to receive data from

only one switched sender at a time. Let sw − pos − send(c, r, dst) determine the

position of tuple (c, dst) in the switch send order(r), and let sw−pos−recv(c, src, r)

determine the position of tuple (c, src) in the switch recv order(r), then,

send[o, r, dsto] ≥send[c, r, dstc] + lat[c, r, dstc]

∀(c, dstc) ∈ switch send order(r)

∀(o, dsto) ∈ switch send order(r)

if sw-pos-send(o, r, dsto) ≥ sw-pos-send(c, r, dstc)

∀r ∈ Ssend

(5.20)

send[o, srco, r] ≥send[c, srcc, r] + lat[c, srcc, r]

∀(c, srcc) ∈ switch recv order(r)

∀(o, srco) ∈ switch recv order(r)

if sw-pos-recv(o, srco, r) ≥ sw-pos-recv(c, srcc, r)

∀r ∈ Srecv

(5.21)

74

5.6 Backend

The synthesizer described above generates an abstract algorithm that specifies

the order in which the nodes communicate the various chunks. The goal of the back-

end is to implement this abstract algorithm. To do so, we extend NCCL [85] with an

interpreter which we call TACCL runtime. While any communication algorithm can

be trivially implemented using NCCL’s point-to-point sends and receives, TACCL

runtime enables us to execute the entire algorithm in a single kernel launch, eliminat-

ing multiple launch overheads. In addition, by reusing NCCL transport mechanisms,

TACCL runtime is able to support all of NCCL’s communication backends such as

IB, Ethernet, NVLink, and PCIe.

5.6.1 TACCL runtime

The input to TACCL runtime2 is a TACCL-EF program, which is an XML

format for representing collective algorithms. TACCL-EF programs operate on three

buffers: input, output and scratch. For each buffer, the program specifies the number

of chunks it will be sliced into such that all chunks are equal size. Every step of the

algorithm is expressed in terms of these chunks.

The program is divided into a set of GPU programs made up of threadblocks.

Each threadblock is made up of a series of steps that are executed sequentially,

with each step specifying an instruction and operands as indices into the input/out-

put/scratch buffers. The current instruction set includes sends, receives (with optional

reduction), and local copies. To simplify the implementation of TACCL runtime, each

threadblock can send to and receive from at most one GPU. Additionally, thread-

blocks within a GPU can synchronize by indicating that one step depends on another

step, which will cause the interpreter to wait until the dependency has completed

before executing the dependent step.

2Link to code: https://github.com/microsoft/msccl

75

https://github.com/microsoft/msccl

The TACCL runtime extends NCCL and it is backward compatible with its

API. Therefore, integrating TACCL runtime into machine learning frameworks such

as PyTorch is a single line change wherein that change swaps the third-party NCCL

library for TACCL runtime. This allows TACCL to dynamically swap in collective

algorithms generated for any training/inference workload using torch.distributed.

5.6.2 Lowering to TACCL runtime

To target TACCL-EF, abstract algorithms are lowered to the executable for-

mat. The sets of sends operating on abstract chunks that comprise the steps of the

algorithm are transformed into pairs of send and receive operations operating on

concrete buffer indices. Furthermore, these operations are placed sequentially into

threadblocks and any necessary dependencies recorded between them.

Buffer allocation. Input and output buffers are preallocated by the user and passed

to the collective. Scratch buffers are allocated by the TACCL runtime per TACCL-

EF. Chunks are indices in the input, output and scratch buffers. For chunks that are

common for both the input and the output buffers (e.g. as in Allgather) a local

copy from input to the output buffer is performed at the end.

Instruction generation. The operations of the abstract algorithm are split into two

instructions for the sender and receiver GPU, and chunks are translated into buffer

references and indices according to the buffer allocation.

Dependency insertion. TACCL transforms a synthesized algorithm into the asyn-

chronous execution model of TACCL-EF and dependencies for each buffer index are

inserted to ensure that the data dependencies present in the abstract algorithm are

honored.

Threadblock allocation. Instructions are grouped such that all of them are either

sending to at most one GPU and/or receiving from at most another GPU (possibly

different). Order of the instructions inside a group should follow the order of the

abstract algorithm. TACCL allocates a threadblock for each group of instructions.

76

Instances. NCCL and consequently TACCL runtime cannot saturate the bandwidth

of a link in a topology using a single threadblock. Thus, TACCL generates multiple

instances of the algorithm to maximize the performance. This is done by subdividing

each chunk into n subchunks that follow the same path as the parent chunk. All

groups of instructions and their threadblocks are duplicated n times and executed in

parallel. § 5.8.3 explores the performance implications of choices of n.

5.7 Discussion

We reflect on our experiences building TACCL, describe problems we encoun-

tered, how we solved them, and how TACCL can be used for inference.

Representing switches in continuous encoding. It is difficult to model how link

bandwidth will be shared over switches when encoding time as a continuous variable

(as is done in TACCL). To adress this challenge, we do not allow a GPU to send data

to two different GPUs on the switch at the same time in our encoding.

Synthesizing combining collectives. Combining collectives are collectives that

combine chunks like Reducescatter and Allreduce. It is not straightforward

to encode combining collectives in a formulation. TACCL synthesizes combining col-

lectives by utilizing synthesis of non-combining collectives, similar to the technique

used by SCCL [18]. Reducescatter can be implemented as an “inverse” of All-

gather— a send from a source GPU in Allgather is instead received and reduced

on the source GPU. However, simply inverting the sends does not work — a GPU

may simultaneously send on different links in an Allgather, but it cannot reduce

all receives together in the inverse case. We thus order the inverse sends using heuris-

tic ordering followed by contiguity encoding in order to synthesize Reducescatter.

Allreduce is synthesized directly by concatenating Reducescatter with anAll-

gather algorithm.

Applicability of TACCL for inference. In the evaluation presented later for

end-to-end models with TACCL, we only show results for training. However, Large

77

Language Models (LLMs) are extremely large with hundreds of billions of parame-

ters [105, 16] and their inference also needs to be distributed between various multi-

GPU machines.

Simply throwing money at the problem and scaling the execution hardware is

not enough. Quoting a Senior AI Scientist at NVIDIA, Dr. Jim Fan, ”In the future,

every 1% speedup on LLM inference will have similar economic value as 1% speedup

on Google Search infrastructure” [41]. We expect that LLM inference workloads

will spend more time waiting on network communication because they have lighter

computation requirements than training workloads. Further, with the increasing scale

of distribution, the size of data to be communicated reduces, making latency-aware

collective algorithms important.

Since TACCL algorithms can reduce network communication overhead and can

generate input-aware collective algorithms with the help of communication sketches

and the α− β model, we expect it to provide significant performance improvements,

leading to high cost savings.

5.8 Evaluation

In this section, we evaluate algorithms obtained with TACCL for various col-

lectives and hardware. We seek to answer the following question:

• How do TACCL collective algorithms perform against state-of-the-art NCCL?

• How is the performance of algorithms synthesized by TACCL impacted with

changing synthesizer inputs?

• Do faster TACCL algorithms impact end-to-end training deep networks?

• How much time is required for synthesizing algorithms using TACCL?

We briefly describe our experimental setup before addressing each of the above

questions.

78

5.8.1 Experimental Setup

We evaluate algorithms obtained with TACCL for Allgather, Alltoall,

and Allreduce collectives on a cluster of 32 GPUs comprised of two Nvidia DGX-

2 nodes or up to four Azure NDv2 nodes. To compare performances, algorithm

bandwidth [81] measurement is used which is calculated by input buffer size di-

vided by execution time. We synthesize TACCL algorithms by exploring different

communication sketches and comparing them against the popular Nvidia Collective

Communication Library (NCCL) (v.2.8.4-1) (§ 5.8.2). We also analyze how different

communication sketches impact the performance of the algorithms synthesized by

TACCL. In particular, we perform ablation studies by varying the inter-node connec-

tions in the logical topology, changing synthesizer hyperparameters, and changing the

number of instances used when lowering to TACCL-EF (§ 5.8.3). To evaluate how

TACCL’s speedups translate to end-to-end performance, we use algorithms generated

by TACCL in two large language models, Transformer-XL and BERT (§ 5.8.4). Fi-

nally, we discuss the synthesis time required by TACCL to generate these algorithms

(§ 5.8.5). All our communication sketches for DGX-2 and NDv2 use a hierarchical

symmetry like the one in Example 5.4.3.

We believe our focus on up to 32 GPUs covers a large section of important use

cases: in an internal cluster of DGX-2 nodes at Microsoft, the sum of GPUs in jobs

of at most 32 was 93.7% of all jobs in the second half of 2021.

5.8.2 Standalone Experiments

5.8.2.1 Allgather

Allgather on DGX-2. Figure 5.6(i) shows the algorithm bandwidth for TACCL’s

synthesized algorithms on two DGX-2 nodes for each output buffer size and plots it

against that of NCCL. We show the speedup of TACCL’s algorithms over NCCL on

the right Y-axis of the plot. We used two different sketches for this topology which

will be explained next.

79

Figure 5.6: Allgather comparisons of NCCL to TACCL’s best algorithm at each
buffer size.

A DGX-2 node has 16 V100 GPUs (Figure 3.4) where each pair of GPUs share

a PCIe switch with a NIC. This makes it natural to assign one GPU in a pair to be

a receiver and the other to be a sender by eliminating outgoing and incoming links,

respectively, in the logical topology. We design a sketch (dgx2-sk-1) that uses this

logical topology, sets chunk size to 2MB, uses two chunk partitions for each buffer, and

the sets switch-hyperedge policy to uc-min. With this sketch, TACCL synthesizes an

Allgather algorithm for two DGX-2 nodes. This algorithm almost saturates the

inter-node bandwidth during the entire run of the algorithm and provides a 20%−25%

speedup over NCCL for large buffer sizes in the 256MB - 1GB range.

80

Next, we design a sketch (dgx2-sk-2) for smaller sizes. This sketch allows both

GPUs in a pair to utilize the shared NIC. However, local GPU i on each node is only

allowed to send/receive to/from local GPU i on the other node. Since the IB is shared,

we double the β cost for each IB transfer to 2 ∗ βIB cost. In this sketch, chunk size

is set to 1KB and the switch-hyperedge policy is uc-max. Using this sketch TACCL

synthesizes an algorithm that is 4.9 × −6.7× faster than NCCL in the 1KB - 1MB

range, and 10%− 3.8× faster than NCCL in the 2MB - 64MB range. On inspecting

this algorithm, we found that TACCL’s synthesized algorithm overlaps inter-node

sends with intra-node all-pair Allgather of node-local data chunks followed by an

intra-node all-pair Allgather of the node-external chunks received over IB.

Figure 5.6(i) shows the algorithm bandwidth and the speedup over NCCL

baseline for the best of these two sketches for each output buffer size.

Allgather on NDv2. The sketch we used, ndv2-sk-1, uses the logical topology

discussed in Example 5.4.1, in which a sender and a receiver GPU were dedicated

such that they are on the same PCIe switch as the NIC. We use a single instance

when lowering algorithms into TACCL-EF for data sizes 1MB and below, and use 8

instances for larger data sizes. Figure 5.6(ii) compares the synthesized algorithms to

NCCL on two Azure NDv2 nodes. TACCL’s synthesized algorithms are 12%− 35%

faster than NCCL for buffer sizes of 1KB - 1MB, and 61%− 3.4× faster than NCCL

for sizes larger than 1MB. These algorithms better saturate the inter-node bandwidth

thanks to the dedicated send/receiver GPUs.

We similarly synthesize Allgather algorithms for four NDv2 nodes and

present the results in Figure B.1(i) in Appendix B.2. These algorithms are 10%−2.2×
faster than NCCL depending on buffer size.

5.8.2.2 Alltoall

Alltoall on DGX-2. We explore the synthesis of Alltoall algorithms by reusing

the dgx2-sk-2 communication sketch designed in the previous section. Figure 5.7(i)

81

Figure 5.7: Alltoall comparisons of NCCL to TACCL’s best algorithm at each
buffer size.

compares the resulting algorithm on two DGX-2 nodes. The synthesized algorithm

using this sketch performs up-to 15% faster than NCCL for batch sizes of 2MB and

larger. For this sketch, TACCL’s synthesizer coalesces chunks sent in inter-node

transfer in this algorithm, which reduces the latency of transfers over IB. TACCL

also uses a communication sketch with chunk size set as 1KB and a logical topology

where GPUs have links to all other GPUs connected via the NIC (dgx2-sk-3). This

algorithm is up-to 55% faster than NCCL for small buffer sizes ranging from 1KB to

16KB.

82

Alltoall on NDv2. Figure 5.7(ii) shows a comparison of TACCL’s best algorithms

forAlltoall on two Azure NDv2 nodes against NCCL. We reuse the communication

sketch ndv2-sk-1 and set the chunk size to 1MB. The generated algorithms run 53%−

66% faster than NCCL for buffer sizes between 16MB - 1GB We explore another

sketch (ndv2-sk-2) with a logical topology in which all GPUs in a node are fully-

connected to all the GPUs in the other node and set chunk size as 1KB. The algorithm

generated by TACCL using this sketch performs up-to 12% faster than NCCL for

buffer sizes from 1KB to 128KB.

For four NDv2 nodes, TACCL’s synthesized algorithms uses communication

sketch ndv2-sk-1 and they are up-to 46% faster than NCCL for buffer size greater

than 1MB, as shown in Figure B.1(ii) in Appendix B.2.

5.8.2.3 Allreduce

Allreduce on DGX-2. As discussed in § 5.7, TACCL composes Reducescatter

with Allgather to implement Allreduce and an algorithm for Reducescatter

can be constructed by inverting an Allgather algorithm. Figure 5.8(i) shows the

performance of TACCL algorithms on two DGX-2 nodes. The Allreduce synthe-

sized from the Allgather using dgx2-sk-2 is 49% − 6.4× faster than NCCL for

buffer sizes ranging from 1KB - 4MB. TACCL’s generated algorithms by using other

communication sketches like dgx2-sk-1 are 2% − 37% faster than NCCL for buffer

sizes ranging from 16MB - 256MB. For buffer sizes of 512MB and greater, our al-

gorithms are at most 9% slower than NCCL. This is because NCCL uses the more

optimized fused communication instructions (such as receive-reduce-copy-send) in its

Allreduce communication which are unavailable in TACCL’s lowering. We leave

these such further optimizations for future work.

Allreduce on NDv2. These algorithms are based on the Allgather synthesized

from the ndv2-sk-1 sketch and use two versions with 1 and 8 instances. Figure 5.8(ii)

compares them to NCCL on two NDv2 nodes. The single instance TACCL algorithm

83

Figure 5.8: Allreduce comparisons of NCCL to TACCL’s best algorithm at each
buffer size.

outperforms NCCL’s Allreduce by up to 28% for buffer sizes of up to 1MB, while

the 8 instance algorithm outperforms NCCL by 28%− 2.7× for larger sizes.

On 4 NDv2 nodes, as shown in Figure B.1(iii) in Appendix B.2, the TACCL

algorithms are up to 34% faster than NCCL for small buffer sizes and 1.9 × −2.1×
faster than NCCL for larger buffer sizes.

5.8.3 Impact of Varying Synthesizer Inputs

In this section, we explore modifications to communication sketches, as well

as the synthesizer hyperparameters and the instances for the lowering, in order to

84

Figure 5.9: Logical topology

Figure 5.10: Chunk size

understand their impact on the performance of the synthesized algorithms. Our aim

is to demonstrate that the controls offered by TACCL have intuitive effects on the

resulting algorithms, which is necessary for effectively communicating user intuition

to TACCL.

We present our analysis for the Allgather collective on two Nvidia DGX-2

nodes. Unless mentioned otherwise, we use the following communication sketch as the

baseline: same logical topology as dgx2-sk-1, chunk size set to 1MB, data partitioning

set to 1, and the switch-hyperedge policy set to uc-max.

Changing logical topology. We create a logical topology with a dedicated sender

85

Figure 5.11: Data partition Figure 5.12: Switch-hyperedge strategies

Figure 5.13: Runtime instances

and receiver GPU similar to dgx-sk-1 except we allow a sender to be connected to

n different receivers in the other node. Figure 5.9 shows the algorithm bandwidth

of Allgather obtained by varying n, the number of IB connections per GPU, for

a fixed chunk size of 1KB, 32KB, and 1MB. For a 1KB chunk size, we found the

algorithm that uses 8 IB connections per NIC performs better than algorithms using

fewer connections. As the chunk size increases to 32KB and 1MB, the optimal number

of IB connections per NIC reduces to 4 and 1, respectively. The benefits of link sharing

shrink as the chunk size increases and β-cost starts dominating over the α-cost.

Changing transfer cost using chunk size. We analyze the sensitivity of

TACCL’s synthesizer to the data size provided in the communication sketch when

its algorithms are applied on a communication using a different data size. Figure 5.10

shows the performance of Allgather algorithm for three different chunk sizes (1KB,

32KB, and 1MB). Algorithms generally perform well for a range of data sizes close

to what they have been synthesized for. We recommend trying a small set of nearby

86

sizes to ensure the best performance.

Changing data partitioning. Figure 5.11 shows the algorithm bandwidth of

algorithms generated by partitioning data on each GPU into a single or two chunks.

We set the switch-hyperedge policy to uc-min and fix number of instances to 8.

At a large buffer size of 1GB, the algorithm generated for two data chunks utilizes

bandwidth better as compared to the algorithm generated for a single data chunk per

GPU.

Changing switch-hyperedge policy. Figure 5.12 shows the algorithm bandwidth

for algorithms generated and evaluated for 1KB, 32KB, and 1MB chunks. The al-

gorithm bandwidth is displayed in log-scale. We vary the switch-hyperedge policy

between uc-max and uc-min. For smaller buffer sizes, the uc-max configuration per-

forms better than uc-min, whereas for larger buffer sizes, uc-min performs better

than uc-max.

Changing number of instances. Figure 5.13 shows algorithm bandwidth with

instances ranging from 1 to 8. The switch-hyperedge policy for these algorithms is

set to uc-min. Increasing the number of instances improves bandwidth utilization —

multiple threadblocks seem to be needed to keep the six NVLinks in a V100 busy.

However, a larger number of threadblocks also increases latency, which we suspect is

due to unfavorable scheduling of synchronization related memory operations onto the

NVLinks at the start of each send. Since latency cost dominates for small buffer sizes,

using a large number of instances only increases the latency cost. As the buffer size

increases, the bandwidth improvements due to more instances become predominant.

Since switch-hyperedge policy and number of instances have a similar relation with

chunk sizes, we always run uc-max algorithms with a single instance and uc-min

algorithms with 8 instances.

87

Figure 5.14: Comparison of TACCL against NCCL for Transformer-XL
model. Training throughput using TACCL’s collective algorithms on Transformer-
XL compared against NCCL on 2 and 4 Azure NDv2 nodes. Speedup over NCCL is
mentioned on top of the bars.

Figure 5.15: Comparison of TACCL against NCCL for BERT model. Train-
ing throughput using TACCL’s collective algorithms for BERT compared against
NCCL on 2 and 4 Azure NDv2 nodes. Speedup over NCCL is mentioned on top of
the bars.

5.8.4 End-to-End Training.

We evaluate TACCL on distributed training of two large language models,

Transformer-XL [32, 6] and BERT [33, 5], on two (and four) Azure NDv2 nodes, i.e.

16 (and 32) GPUs. Transformer-XL uses data parallelism and whereas BERT uses

model parallelism. The typical transfer sizes for Allreduce in Transformer-XL is in

the 20 - 40MB range, and for BERT it is about 2MB. Both models communicate with

torch.distributed and, as explained in § 5.6, using TACCL algorithms in them is

88

AllGather
Sketch Time(s)

dgx2-sk-1 35.8
dgx2-sk-2 11.3
ndv2-sk-1 2.6

AlltoAll
Sketch Time(s)

dgx2-sk-2 92.5
ndv2-sk-1 1809.8
ndv2-sk-2 8.4

AllReduce
Sketch Time(s)

dgx2-sk-1 6.1
dgx2-sk-2 127.8
ndv2-sk-1 0.3

Table 5.3: Synthesis time for TACCL algorithms for different collectives using differ-
ent communication sketches.

quite straightforward.

We lower the algorithm synthesized by the synthesizer into TACCL-EF with

1 and 8 instances, and show the performance of both against NCCL. Figure 5.14

and Figure 5.15 show the training throughput obtained by using TACCL’s collective

algorithms for communication instead of NCCL for Transformer-XL and BERT re-

spectively for different batch sizes. TACCL speeds up training of Transformer-XL by

11% − 1.94× on 2 nodes and by 2% − 1.44× on 4 nodes. The speedup for BERT

is 12% − 2.36× on 2 nodes and 7% − 1.74× on 4 nodes. Depending on the memory

available per GPU and on how the batch size affects model accuracy, any of these

batch sizes might be chosen for use in practice.

We also use algorithms synthesized by TACCL forAlltoall andAllreduce

collectives for training an internal Microsoft’s mixture-of-experts workload on two

NDv2 nodes. The Alltoall and Allreduce sizes required for this model are

≈ 6MB and ≈ 256MB, respectively. TACCL improves the end-to-end throughput of

this model by 17%.

5.8.5 Synthesis Time

Table 5.3 shows the total time it takes for TACCL to synthesize algorithms for

different collectives using some of the communication sketches mentioned in § 5.8.2.

In most cases synthesis takes from seconds to a few minutes, making it amenable

to a user-in-the-loop approach. When synthesizing an Alltoall collective using

some communication sketches, TACCL’s contiguity encoding may take more time in

89

proving the optimality of a feasible solution. We put a time limit of 30 minutes on

the contiguity encoding in these cases. The contiguity encoding for sketch ndv2-sk-1

reaches this timeout, but a feasible solution was already found in 4min 14s. We have

also been able to synthesize an Allgather for 80 GPUs (10 NDv2 nodes) in under

8 minutes.

5.9 Summary

In this chapter, we presented TACCL, a topology and input-size aware collec-

tive communication library for multi-node distributed machine learning training and

inference. TACCL uses user-provided communication sketches to guide the synthesis

of collective algorithms. Using a three-step technique of relaxed routing, heuristic

ordering, and contiguity and exact scheduling, TACCL generates efficient collectives

for multi-node topologies. The algorithms thus generated are up to 6.7× faster than

the state-of-the-art NCCL and result in 11%− 2.3× faster end-to-end training time.

TACCL is open-sourced and available at https://github.com/microsoft/taccl.

90

https://github.com/microsoft/taccl

Chapter 6: MAPLE: Parameterized Learned Index

In Chapter 2, we discussed that there exist a wide variety of workloads and that

index structure performance depends on the underlying data structure they employ.

In this chapter, we present MAPLE, a parameterized learned index that can obtain

high performance for a wide range of workloads.

We first present the goals of MAPLE (§ 6.1). We then discuss the character-

istics of different data structures that we explore in order to build MAPLE. We then

discuss MAPLE’s design (§ 6.3). Finally, we evaluate MAPLE against an existing

state-of-the-art learned index (§ 6.5).

6.1 Goals

• MAPLE should be designed to identify and expose only a few, but important,

parameters.

• MAPLE should be able to achieve a wide range of spectrum on the read-write

performance curve.

• MAPLE should achieve high performance on different types of workloads and

datasets.

6.2 Data structures for learned index

Prior work (ALEX) [36] has shown that it is possible to build an updatable

learned index that, analogous to the B+Tree, first performs a model-based tree traver-

sal to reach a leaf node, and then performs a ”last-mile” search on the leaf node.

This last-mile search comprises 54% - 83% of the lookup time for ALEX for different

datasets. For inserts, this contribution would be even greater. Thus, the data struc-

tures used as leaf nodes in learned indexes ultimately determine the speed of access

91

GA config-1 config-2 config-3
Dataset: Books

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Th

ro
ug

hp
ut

 sp
ee

du
p 1.00 1.04 1.00 1.02

GA config-1 config-2 config-3
Dataset: Facebook

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Th
ro

ug
hp

ut
 sp

ee
du

p 1.00 0.99 1.01 1.00

GA config-1 config-2 config-3
Dataset: OpenStreetMaps

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Th
ro

ug
hp

ut
 sp

ee
du

p 1.00 1.01 1.01 1.02

Figure 6.1: Performance improvements over cost model based gapped-array for dif-
ferent gapped-array configurations on different datasets.

to data. In order to achieve the goals of the MAPLE, we first need to discuss the data

structures that will be used to store data and identify how they can be parameterized

to achieve different points on the read-write performance curve. Here, we discuss

three data structures that we explore and their lookup and insert performance as well

as their contribution to memory footprint.

6.2.1 Gapped Array

The Gapped Array (gapped-array) data structure was introduced in ALEX [36]

and provides fast read performance and good write performance. A gapped-array

node has interspersed gaps in-between sorted keys which allows for faster model-

based reads and model-based writes. A linear model is first trained using closed-form

linear regression on keys in the node. Keys are then placed in the gapped-array

according to the position predicted by the model. The gap density in a gapped-array

is kept to be around 20%−40%, allowing keys to be spread apart and be placed close

to the predicted positions. A bitmap is used to mark the positions of gaps and keys.

Lookups. Whenever a key has to be looked up, the same model is used to obtain its

position, thereby having a very close approximation of the key position. Lookups are

done by performing an exponential search around the approximate position provided

by the model. The exponential search involves exponentially increasing the search

boundary for as long as the boundary condition is satisfied and then performing a

binary search within the identified boundaries.

Inserts. In the case of inserts, the lookup position is first obtained for the key to be

92

inserted. If there is a gap in that position, the key is inserted there, and otherwise,

the keys are shifted to the nearest gap to make space for the new insert. Once the

density of keys in a gapped-array reaches 80%, the node is either expanded or split

into two nodes. ALEX makes this decision based on its cost model which models

cost using a linear combination of the expected number of exponential searches in

the node for lookups and inserts, and the expected number of shifts in the node for

inserts. When the empirical cost of a node becomes higher than its expected cost,

ALEX decides to split the node.

We explore different parameters in a gapped-array in order to achieve different

tradeoffs in read-write performance and to check if it can be used to better adapt to

write-heavy workloads. ALEX has a knob for the expected insert fraction in the work-

load. We vary it from 0 to 1 in increments of 0.1 for two different datasets (Amazon

Books and OpenStreetMaps Cellids) to obtain the average read and write latency for

different expected insert fractions. We notice that this only improves insert latency

by about 2%− 3% when the knob is turned from a read-only to write-only workload

expectation. We then expose the maximum average number of exponential search it-

erations (Msi) and the maximum average number of shifts (Msh) as parameters of the

gapped-array. We track the number of exponential searches upon key lookups and

inserts and perform structural modifications during inserts to the gapped-array node

in case the average exponential search required in a node exceeds the maximum of the

expected exponential search or the Msi configuration set. Using a higher Msi reduces

the frequency of structural modifications required but also increases the iterations of

exponential searches required. This shows around 4% improvement in cases where

the number of search iterations expected is already close to one. However, it cannot

be increased indiscriminately as that would affect the average-case performance of

inserts and lookups. We also track the number of shifts required when inserting keys

and perform structural modifications in case the average shifts required exceed the

maximum of the expected shifts or the Msh configuration set.

We only consider the Msi and Msh parameters in this dissertation. By making

93

Fragment Pointers

M(a,b)

Fragments k1 k2 k4 k3 k5 k7 k8 k6

tail tail tail tail

Empty slotsKeys

Linear model

k9

Figure 6.2: The Fragmented Log Data Structure.

use of the Msi and Msh parameters, we are able to tune the insert performance of

gapped-array, though only by a little. Figure 6.1 shows the improvement in perfor-

mance obtained by three different configurations on three different datasets for the

same workload (100% inserts) as compared to a gapped-array in MAPLE which uses

ALEX’s cost model (GA). We notice different configurations perform better for dif-

ferent datasets. However, the performance gain for inserts is not too high. In fact, for

a given workload and dataset, a couple of configurations seem to outperform all other

configurations in terms of read and write latency (by a small margin), and we are

unable to obtain the wide range of read-curve performance spectrum that we would

like. This motivates the need to introduce a new learned data structure that has fast

inserts and is still tunable to achieve good read performance.

6.2.2 Fragmented Log

We introduce a new write-optimized learned data structure called Fragmented

Log (fragmented-log). As shown in Figure 6.2, a fragmented-log node consists of

multiple fragments, each fragment storing un-sorted dense keys at the start and empty

slots for new keys at the end. A sorted order exists between the fragments of the

94

M(a’,b’)

k7 k8 k6

k10

(b) Split fragment

k9 k10
…

M(a,b)

k7 k8 k6

k10

k9 k10

(a) Expand fragment

…

M2(a’’,b’’)

k7 k8 k6

k10

(c) Split into multiple fragment nodes

k9 k10

M1(a’,b’)

k1 k2 k4 k3
…

Figure 6.3: Cases on inserting a key into a full fragment.

log, and each fragment of a node is assigned a partition of the key space allocated

to the node. An array of fragment pointers is used to access different fragments in

a fragmented-log. A fragmented-log node also stores a tail array that points to the

first empty slot in each fragment.

Lookups. When a key is read in fragmented-log, a linear model is used to map the

key to the fragment that is assigned the key-space partition in which this key lies.

The key is then linearly searched from the identified fragment.

Inserts. On key inserts, the fragment to insert into is identified using a linear model,

and the key is simply appended to the fragment. In case the fragment is full, it is

either expanded to make space for the key or split into multiple fragments, one of

which will be used to insert the key. In case of fragment split, either the number of

fragments in a single fragmented-log node increases or the entire fragmented-log node

is split into multiple nodes. Figure 6.3 shows the different cases that occur when key

k10 is inserted into the full fragment shown in Figure 6.2. The fragmented-log exposes

different parameters that determine which of these actions will be taken.

Exposed parameters and performance characteristics. Owing to the unsorted

nature of data in a fragment, lookups need to take place using linear search and are

thus not particularly fast. We expose the maximum fragment size (mf-size) as a

parameter of the fragmented-log. By setting the mf-size, we cap the number of keys

per fragment, thus providing control over read performance. On inserts, we ensure

95

Figure 6.4: Insert and lookup latency for different fragmented-log configurations.

that the number of keys in a fragment does not exceed mf-size by either multiplying

the number of fragments in the node or splitting the node into two. Reducing the

mf-size would lead to a higher read throughput. However, it would trade-off write

performance because structural modifications would be required at a higher frequency.

We also expose the maximum number of fragments (Mnf) allowed in each

fragmented-log node as a parameter. On inserts, if the maximum fragment size has

been achieved, the fragmented-log node will undergo structural modifications. The

parameter Mnf determines whether the node will increase the number of fragments

as a part of the modification, or split into two. The higher the Mnf, the more the

number of fragment pointers. If the fragmented-log stores a highly skewed key space,

the fragment usage will also be skewed, in which case, a larger Mnf would only serve to

increase memory usage contribution from fragment pointers. On the other hand, for

a more uniform key distribution, a higher Mnf reduces the number of fragmented-log

nodes needed in a tree, thus also reducing the tree height.

When the maximum number of fragments is reached, the node will split into

multiple nodes with smaller fragments. We expose the initial number of fragments

(nf) in each new node as another parameter of fragmented-log. Based on the nf, the

96

number of new nodes created is determined.

By modifying the three parameters - mf-size, Mnf, and nf, it is possible

to achieve a range of data points on the read-write performance spectrum. For a

particular workload and dataset, we obtain the read and write latency of about 100

different fragmented-log configurations. As can be seen in Figure 6.4, we are able to

achieve a tradeoff between read and write performance for different configurations.

We also plot the Pareto front for this data and note that many configurations are sub-

optimal and do not lie on the Pareto front. Thus, fragmented-log exposes important

parameters that can be used to tune its performance and it is important to identify

the right configurations.

Memory contribution. Each fragment is accessed using a fragment pointer, which

adds to the memory usage in the index structure. Since the size of each fragment

is capped in a fragmented-log, it is possible to obtain bounds on the number of

fragments and thus the memory contributions from each fragment pointer and its

associated metadata.

Let us assume N keys need to be indexed, the maximum number of keys

allowed in a fragment is mf-size, and a fraction d of empty slots are reserved in

fragments to allow inserts. We refer to the number of fragments as F . Then, the

minimum value for F is when the keys are uniformly distributed and all fragments are

filled with the maximum allowed keys. Thus, at minimum, there will beN/(mf-size×

d) fragments. The maximum value of F would be when keys are distributed in such a

way that one fragment has mf-size×d keys and all other fragments have a single key.

In this case, there would be N − mf-size× d+1 fragments, resulting in much higher

memory usage. However, this worst case only occurs when keys are exponentially

increasing in powers of two, which is an unlikely scenario. By partitioning the key

space with the help of several fragmented-log nodes, we are able to obtain a much

simpler key distribution per fragmented-log node, so that it requires fewer fragments

to model, and thus does not lead to a memory usage explosion.

97

For each fragment, we need to store pointers to its key and value array. We

also need to store metadata like the last filled position and size of the fragment. In

total, the added memory contribution to the index due to the fragments is 21 × F

bytes. The fragmented-log node does not need to store a bitmap of existing keys since

keys are densely packed. Deletion of keys happens by swapping with the last filled

key, thus also maintaining the dense structure. Instead of maintaining a bitmap like

other gap-based data structures that we will discuss later, the fragmented-log node

can use memory for storing fragment pointers instead. Further, unlike gap-based data

structures that only allow nodes to be filled to a certain density, the fragmented-log

node can be filled to capacity, thereby efficiently utilizing memory.

6.2.3 Minimal Perfect Hash Functions (MPHF)

Minimal perfect hash functions [92, 43, 74], are built on static data and injec-

tively map all n keys of the data to integers from 1 to N . They can thus be used to

provide worst-case O(1) lookup times when keys are placed in the positions obtained

from the perfect hash function.

We explore using a particular perfect hashing function, called PTHash [92], to

obtain good read performance in MAPLE. Internally, the PTHash function partitions

keys into skewed buckets based on key hashes and generates a ‘pilot‘ per bucket, which

when XOR’d with the hashed key gives the key index.

Hash function construction. Constructing a perfect hash function is computa-

tionally expensive. We modify the method of hash function construction of PTHash

by adding a model-based bucket selection technique. PTHash partitions keys into

skewed buckets based on key hashes, and generates a ‘pilot‘ per bucket, which when

XOR’d with the hashed key gives the key index. Instead of using key hashes to de-

termine the bucket, we use linear models to identify the buckets for keys. This speeds

up construction time by 3× for sorted data.

Inserts. We provide a small write buffer to accommodate writes in PTHash. On key

98

inserts, we append the key to the write buffer. If the buffer is full, we coalesce the

buffer keys with the read-only array and reconstruct the hash function.

Lookups. On key lookups, we query the hash function to give us a key index. If the

key is not present in that index, we search the write buffer linearly.

In our experiments with PTHash, we found that requiring a per-node auxiliary

data structure to store pilots made the PTHash leaf node much less cache efficient

than the Gapped Array. Further, the memory usage of the MAPLE tree with PTHash

nodes increased because it had to store pilots for each bucket in each node. In our

evaluation of MAPLE later, we only consider the Gapped Array and Fragmented Log

data structures. However, this exploration of PTHash shows a way to add model-

based components to already existing data structures.

6.3 Design

In this section, we discuss the design of MAPLE, starting with an overview of

MAPLE and how it manages to achieve the goals mentioned above. We then describe

the throughput prediction model used by MAPLE to obtain candidate configurations

for the parameters.

6.3.1 Overview

MAPLE is a parameterized learned index that can be used to achieve high per-

formance for a wide range of workloads. Figure 6.5 shows the workflow of MAPLE.

The first time that MAPLE sees an input workload, it queries its evaluator with a

subset of the trace. We expose different parameters for leaf node data structures in

MAPLE that determine how the underlying data is stored and how fast it can be

accessed or modified. The evaluator uses a machine-learning model to predict the

throughput of all the different configurations of the parameters on the trace subset.

It then obtains the top-few configurations for MAPLE according to the predicted

throughput and executes the trace subset with them on the hardware in order to

99

MAPLEInput
workload

Trace
subset

Best
config

Output

Evaluator

Data structure
parameters

Config
enumeration

Throughput
prediction model

Top-k
configs

Hardware

Figure 6.5: Overview of MAPLE workflow.

identify the best-performing configuration for the trace. MAPLE then uses this con-

figuration to load the data and respond to requests.

6.3.2 Selecting MAPLE parameters

MAPLE exposes different parameters that determine how the underlying data

is stored and how fast it can be accessed or modified. First, it exposes the type of data

structure that stores the key-value data. MAPLE allows selecting between a gapped-

array data structure(§ 2.6) and the novel fragmented-log data structure as a node

type in the index. Based on the type, each data structure is further parameterized.

For each data structure, we identify a handful of parameters as described earlier that

determine how well it performs.

100

6.3.3 Throughput Prediction Model

In order to identify the best configuration of parameters for MAPLE, we train

a machine learning model to predict the throughput of the workload given the con-

figuration parameters. We observe that both the workload distribution as well as

the dataset distribution impact which configurations are best for MAPLE. Thus, we

build a convolutional neural network model that takes in a subset of the trace as an

image in order to generate trace embeddings. We also discretize the parameters into

smaller buckets and obtain an embedding of these bucketed configurations, which we

add and concatenate with the trace embeddings. We then train a multi-layered neu-

ral network classifier to predict the throughput of the (trace, configuration) pair. By

querying the trained throughput model again with multiple candidate configurations

for a given workload and dataset, we can obtain a prediction of the throughput.

6.4 Discussion

We discuss some challenges we faced, how we solved them, and the insights

we obtained when building MAPLE.

In-memory systems are sensitive to control. We found that performing various

control-related activities in the in-memory environment adds significant overheads

in practice, whose effects are felt especially in the scenarios where learned indexes

already provide high-speed data access. We list overheads that are incurred as a

part-and-parcel of MAPLE’s functionality and discuss how we carefully implement

MAPLE to reduce these added overheads.

• Overhead of maintaining different data structures: Since data is stored and

accessed differently in fragmented-log and gapped-array in MAPLE, we need

a way to determine the correct code path for an operation. We initially used

derived node classes to implement gapped-array and fragmented-log and take

advantage of polymorphism and transparent vtable lookups. However, we saw

101

up to 14% degradation of performance when deriving two types of nodes from

a base datanode class, as compared to using the datanode class to implement

a gapped-array node. Instead, we implement both fragmented-log and gapped-

array as a part of the same node class, and use an attribute node type to switch

between their data access implementations. Here too, the switch condition

and associated branch prediction misses do add to overheads. However, the

performance with this implementation with both node types enabled is faster

than using a derived class implementation. We note the more simple a dataset

is to model, the faster its accesses are, and thus these overheads are seen more

prominently in such cases.

• Overhead of monitoring to maintain configuration parameters: MAPLE mon-

itors node parameter values and performs structural modifications when they

exceed their configured threshold. However, this monitoring itself has a cost as-

sociated with it. We find that monitoring parameters when performing lookups

in a MAPLE tree of gapped-array reduced throughput by up to 3% with differ-

ent datasets. We note that as long as MAPLE is bulk-loaded with the correct

configurations and all inserts aim to preserve the property that parameter val-

ues are lower than the threshold, it is not required to perform any monitoring

of parameters for lookups. Thus, lookups in MAPLE do not lead to structural

changes.

Linear search in Fragmented Log can allow partial ordering. We make an

interesting observation regarding the lookup technique in the Fragmented Log data

structure. Keys in a fragment of a fragmented-log are unsorted and lookups in a

fragment perform linear search in order to obtain the position of the key. Since we

are scanning the keys and comparing them against the key to be looked-up, we are

ultimately performing a subpart of the algorithm that might be used to sort the

fragment. It would be interesting to explore the different ways to make use of this

insight to obtain an adapting fragmented-log index structure in case of heavy reads.

102

For example, one way to introduce partial order in the fragmented-log on key lookup

could be to swap the first key larger that the looked-up key with the looked-up key

on linear search.

6.5 Evaluation

In this section, we aim to answer the question of whether MAPLE can achieve

better performance than baseline ALEX.We also discuss the memory usage of MAPLE

as compared with ALEX.

6.5.1 Experimental Setup

We run experiments on an Intel(R) Xeon(R) Silver 4314 machine with two

sockets. We use numactl to run MAPLE on a fixed core and use memory from the

same node as the core. We use AVX-2 instructions to perform linear searches in

fragmented-log. We downsample the trace image to 256 × 256 dimensions before

using it in the throughput prediction model. For all experiments on ALEX, we set

its expected insert fraction to the actual insert fraction of the workload.

6.5.2 Datasets and workloads

Datasets. We use the SOSD [66] suite of datasets to benchmark MAPLE. Commonly

used benchmarks like the Yahoo! Cloud Serving Benchmark (YCSB) tend to have

a fairly uniform key distribution, which a learned index can overfit easily. Instead,

SOSD benchmark is particularly built to benchmark learned indexes. We use three

real-world datasets from SOSD - 1) Amazon (Books), a dataset containing book

popularity data from Amazon, 2) Facebook (FB) data, a dataset containing randomly

sampled user-ids from Facebook, and 3) OpenStreetMap (OSM) CellIDs, a dataset

containing cellids from OpenStreetMaps. These datasets have 200 million unsigned

64-bit integer keys. We use a constant payload of unsigned 64-bit with the keys.

Workloads. For all experiments, we bulk-load 10M keys in the index structure

103

Books FB OSM
Write-only workload

0

5

10

Th
ro

ug
hp

ut
 (M

op
s/

s)
ALEX MAPLE

Books FB OSM
Write-heavy workload (15% reads)

0

2

4

Th
ro

ug
hp

ut
 (M

op
s/

s)

Books FB OSM
Read-heavy workload (85% reads)

0

5

Th
ro

ug
hp

ut
 (M

op
s/

s)

Books FB OSM
Read-only workload

0
5

10
15

Th
ro

ug
hp

ut
 (M

op
s/

s)

Figure 6.6: Performance of MAPLE as compared to ALEX on different workloads.

and perform 200M trace operations. We benchmark for different workload patterns,

from write-only (insert fraction = 1), and write-heavy (insert fraction = 0.85), to

read-heavy (insert fraction = 0.15), and read-only (insert fraction = 0).

6.5.3 Throughput comparison

We compare the throughput obtained by MAPLE against ALEX for different

workloads and datasets in Figure 6.6. For a write-only workload, MAPLE chooses

to use a configuration with fragmented-log, and obtains an 88%, 7.5×, and 3.9×

performance improvement over ALEX for the books, fb, and osm datasets respec-

tively. The books dataset is much simpler to model as compared to the other two

datasets, resulting in a smaller tree and fewer exponential search iterations and key

shifts in ALEX. Thus the performance improvements from using fragmented-log in

MAPLE are not as pronounced for the books dataset as compared to the fb and osm

datasets. For a write-heavy workload, MAPLE chooses to use a different configura-

tion with fragmented-log, and obtains similar performance as ALEX for books, 2.8×

speedup over ALEX for fb, and 2× speedup over ALEX for the osm dataset. For

a read-heavy workload, MAPLE uses different configurations of gapped-array for all

datasets. Since MAPLE has overheads due to maintaining different data structures,

104

Books FB OSM
Write-only workload

0

2000

4000

M
em

or
y

(M
B)

ALEX MAPLE

Books FB OSM
Write-heavy workload (85% writes)

0

2000

4000

M
em

or
y

(M
B)

Books FB OSM
Read-heavy workload (85% reads)

0

500

M
em

or
y

(M
B)

Books FB OSM
Read-only workload

0

100

200

M
em

or
y

(M
B)

Figure 6.7: Memory usage of MAPLE as compared to ALEX on different workloads.

it suffers a performance drop of 4% − 8% as compared to ALEX. For a read-only

workload, MAPLE chooses different configurations of gapped-array for books and

osm, and has performance drop of 3% and 8% respectively for the datasets. However,

for the fb dataset, MAPLE spuriously chooses a fragmented-log configuration and

suffers from around 20% of performance drop. This could be because the fb trace is

hard to represent in an image owing to the presence of extremely big outlier keys,

resulting in the throughput model not being able to accurately predict configuration

throughput for the workload.

6.5.4 Memory usage

We show the memory used at the end of a workload by MAPLE as compared

to ALEX for different workloads and datasets in Figure 6.7. The memory used by

MAPLE using fragmented-log or gapped-array is within 4% of that of ALEX for

most workloads and datasets. For the books dataset in the write-heavy workload,

MAPLE uses 5% less memory than ALEX. For the osm dataset in the write-heavy

workload and fb dataset in the read-only workload, MAPLE uses 10% and 22% more

memory than ALEX respectively. Currently, MAPLE’s throughput prediction model

and configuration selection strategy do not consider memory usage as an objective.

105

The next fastest configuration of MAPLE from the top-10 for the osm dataset in

the write-heavy workload also has a 2× speedup over ALEX with only a 2% higher

memory usage than ALEX. In the future, we can explore predicting memory usage

in the prediction model or filtering out high-memory configurations from the top-k

configurations.

6.6 Summary

MAPLE is a parameterized learned index structure that can provide efficient

read and write performance by using different learned structures as components for

its leaf nodes. For write-heavy and write-only workloads, MAPLE can achieve sim-

ilar and up to 7.5× performance speedup with the help of the novel fragmented-log

data structure while having performance comparable to the state-of-the-art updatable

learned index on different datasets.

106

Chapter 7: Related Work

In this chapter, we discuss systems, libraries, and other research that are

related to this dissertation.

7.1 Memory usage bottlenecks in deep network training

We first reiterate some of the prior work done in reducing memory consumption

bottlenecks in deep network training.

Optimizing deep network operators. Gist [58] proposes several hand-crafted op-

timizations such as storing only ReLU signs. RevNets [49] redesigns a ResNet [51]

architecture making each network block reversible, thereby eliminating the need to

store intermediate activations for backpropagation. Memory-efficient DenseNets [94]

reduce memory utilized for feature maps by recomputing all intermediate feature

maps during the backward pass with a small compute overhead. In-place activated

batchnorm [17] or ReLU layers use output activations to compute their gradients, thus

reusing a single memory buffer for the gradient computation in consecutive layers.

Although these hand-crafted techniques independently result in memory savings, it is

difficult to know which technique will perform better when, and different implemen-

tations perform best on different architectures. In contrast, MONeT automatically

finds the best implementation for each forward and backward operator given a mem-

ory budget.

Mixed precision training. Mixed precision training [78] uses half-precision (FP16)

instead of single precision (FP32) for all tensors and arithmetic during training, re-

ducing the memory by nearly half. While training at precision lower than FP16

results in loss of training quality [11], prior work like backpropagation with approx-

imate activations [20] carefully quantize certain intermediate outputs (activations)

to 4 bits, resulting in significant memory savings. MONeT is orthogonal to mixed

107

precision training. It currently only has operators that compute in full-precision, but

it is possible to add half-precision operations to MONeT as well.

Dropping intermediate outputs. [24] proposed dividing a network into different

segments, dropping all intermediate outputs within each segment, and recomputing

them later. Chen et al. use
√
n equal segments, trading memory savings for the cost

of an extra forward pass. Checkmate [59] solves the problem in a more general setting,

using a mixed-integer linear program solver to decide which layers to recompute for a

given network. Like Checkmate, MONeT optimizes a checkpointing schedule, but on

a different computation graph that allows for the optimization of an entire execution

plan jointly to find a checkpointing schedule as well as the best implementation of

each forward and backward operator.

7.2 Network communication overhead in distributed deep
learning

We now discuss prior work done to build efficient collective algorithms. We

also discuss prior sketching approaches in other areas.

High-Performance Computing (HPC). The MPI standard provides a set of col-

lective communication algorithms that enable efficient distributed computations of

interconnected nodes [40]. The HPC community has focused on the efficient im-

plementation of these MPI collective algorithms [93, 115] and demonstrated how to

build optimized algorithms for specific interconnects, like mesh, hypercube, or fat-

tree [101, 15, 13]. In contrast to TACCL, these prior works assume homogeneous

interconnects and are often only focused on bandwidth optimality. Hybrid algo-

rithms [21, 13] combine bandwidth- and latency-optimal algorithms based on input

sizes, but only for mesh networks.

NCCL. NCCL [85] is a GPU implementation of a subset of the standard MPI col-

lectives, optimized for NVLINK and Infiniband interconnects. While NCCL uses the

topology of GPU connections and NIC placement along with buffer size to decide be-

108

tween two main types of communication algorithms — Ring and Tree, it is agnostic

to the exact performance profile of the links, and thus (as we show earlier) is often

multiple times slower than TACCL’s topology aware collectives.

Synthesis-based approaches. Recent works like SCCL [18], Blink [116], and

Plink [76] specialize algorithms for the underlying topology. SCCL solves an integer

programming encoding based on discrete-time values in the form of steps and rounds

of the algorithm in order to achieve the pareto-frontier of latency- and bandwidth-

optimal algorithms. SCCL is able to synthesize a novel pareto-optimal Allgather

algorithm for an Nvidia DGX1 node, but its restrictive formulation constrains it to

only synthesize algorithms for single-node topologies. TACCL on the other hand

synthesizes collective algorithms for multi-node topologies. Blink uses a heuristic

spanning-tree packing algorithm to maximize bandwidth utilization within a node

and a hierarchical approach across the node. Blink has good performance over NCCL

in the case when NCCL cannot create rings spanning all GPUs inside a node. TACCL,

on the other hand, generates algorithms for the full multi-node topology and outper-

forms NCCL when using the entire node of GPUs. Plink constructs a logical topology

based on bandwidth and latency probes of the physical topology to avoid oversub-

scribed and congested links and searches for a reasonable clustering of nodes for a

two-level hierarchical reduction strategy. Plink builds that hierarchical reduction from

known primitives and does not search over the space of possible algorithms.

Hierarchical approaches. There are also hierarchical approaches to implement

collectives [28, 102, 76, 116]. For example, Horovod [102] implements an Allreduce

by a local ReduceScatter, a global Allreduce, and then a local Allgather. These

methods do not search over possible algorithms and instead pick from a known set

of decompositions. Concurrent to our work, Ningning et al. [122] use syntax-guided

synthesis to combine base MPI primitives among a subset of nodes to hierarchically

generate larger MPI primitives for the entire network. In contrast, TACCL uses a

fine-grained approach for algorithm synthesis while using communication sketches

109

for scalability. Combining these two complementary approaches is an interesting

opportunity for future work.

Network flow problems. Network flow problems have used linear programming

to solve routing and scheduling problems for traffic engineering [53, 60, 63, 108, 3]

and topology engineering [109]. These techniques, however, cannot be used for gen-

erating collective algorithms since communication collectives do not follow all flow

properties. Non-source GPUs in a collective can send the same chunk over differ-

ent links in parallel while having received that chunk only once, which violates an

important flow-conservation property used extensively in network flow problem lit-

erature. TACCL on the other hand makes use of communication sketches and an

encoding relaxation technique to solve a continuous-time integer linear programming

that faithfully models communication collectives.

Earlier works [113] solve a store-and-forward packet routing problem, in which

packets must be routed to their destinations in over an arbitrary N-node network in

minimum time. They first solve a relaxed linear problem to obtain a set of paths,

followed by path filtering to obtain a schedule with time steps proportional to conges-

tion and dilation of the path. Similar to TACCL, the approach of finding paths is to

minimize the congestion and dilation metrics of the paths. However, TACCL differs

from this work in how it encodes both the routing and scheduling problems. Further,

collective algorithms have many differences as compared to store-and-forward rout-

ing. For example, routing of packets in collective algorithms can take place as trees

instead of paths, and the underlying network has heterogeneous link profiles.

Sketching approaches. Program sketching [110, 61, 111] is a popular technique that

has been applied to a variety of problems from synthesizing stencil computations [112],

converting hand drawings to images [42] to social media recommendations [26]. Our

work builds on this body of work to use sketching to effectively search a large space

of communication algorithms.

110

7.3 Workload-adaptable Index Structures

We finally discuss some of the work done in building index structures to obtain

high performance for different workloads and datasets.

Updatable learned indexes. Earlier learned indexes such as the Recursive Model

Index (RMI) [69] and Radix Spline [67] are read-only and cannot efficiently support

updates. More recently, updatable learned indexes such as the FITing-Tree [47],

PGM-Index [46], ALEX [36], and LIPP [121] have been introduced.

• The FITing-Tree uses a B+Tree for tree traversal and has different segments as

leaf nodes. Each segment in a FITing-Tree is represented by a linear function

that predicts a key’s approximate position within the error bounds specified

when building the FITing-Tree. In order to allow inserts, the FITing-Tree uses

a sorted delta buffer per segment. When full, the buffer is merged with the

segment, which may then be split into multiple segments if the error threshold

is crossed. While the FITing-Tree has good lookup performance and reduces

space utilization by multiple orders of magnitude compared to traditional index

structures, its insert performance is comparable to or lower than B+Tree, and

thus it should not be used for write-heavy workloads.

• The PGM-index uses piece-wise linear functions with a fixed ϵ error threshold

for both internal as well as leaf nodes. In contrast to FITing-Tree, it uses an

LSM-based strategy for inserts where it builds a new PGM-index by merging

smaller sub-indexes on key inserts. While PGM-indexes have good insert perfor-

mance, MAPLE instead uses the fragmented-log data structure for write-heavy

workloads which can be tuned to also improve read performance. In the future,

we can explore how an LSM-based strategy can be used for MAPLE leaf nodes.

• As discussed earlier, ALEX uses a Gapped Array data structure in order to

absorb key inserts. Based on the workload, MAPLE can decide to either use

Gapped Array or Fragmented Log data structure.

111

• LIPP is another learned index that uses gaps in leaf nodes to accommodate

inserts. LIPP ensures that its model-based tree traversal always points to the

precise position of the key, and thus eliminates the need for a last-mile search as

required in ALEX. However, prior work [120] has shown that the performance

gain in LIPP is largely from trading off space for speed and ALEX can perform

similarly or better than LIPP if it uses as much memory as LIPP. We show that

MAPLE has similar memory usage as ALEX while being able to achieve high

read and write performance according to the workload.

Automated and semi-automated index structure construction. Works like

self-designed data structures [55, 54, 56, 57] and GENE [37] eschew handcrafted in-

dex data structures and instead automate the design of data structures from a range

of different design choices. For example, the Data Calculator [55] identifies all the

different types of data structure designs possible in terms of data layout and data ac-

cess, and introduces learned cost models that can be used by data structure designers

to identify the best-performing design for the expected hardware, data, and query

workload. Initial results show that it is possible to design efficient and interesting

data structures that combine different design primitives. Similarly, in GENE, the

authors allow using multiple design primitives in the index structure. They differen-

tiate between the logical part of the index, which partitions the key space, and the

physical part of the index, which actually stores data, and use a genetic algorithm to

obtain the best combination of design choices for a given workload. However, GENE’s

implementation currently only supports read-only queries.

With MAPLE, our main focus is to reduce the number of data structures to

reason about to only a handful and parameterize them to allow obtaining good per-

formance on a wide read-write spectrum of workloads. We restrict the internal nodes

of MAPLE to model nodes that allow model-based traversals. We also use the same

configuration of parameters for all leaf nodes. We believe that this approach allows

the building of more practical index structures that can be easily used and adopted.

112

In the future, it would be interesting to explore allowing different configurations for

different leaf nodes in MAPLE as is done in the Data Calculator and GENE.

Parameter tuning in existing indexes. LSM-Tree based index structures expose

a large number of parameters to the user that can be tuned to obtain a wide range

of performance characteristics. Multiple works, such as Dremel [125] aim to identify

the optimal configuration for the parameterized index. In contrast to such works, we

design learned data structures in MAPLE that have only a handful of parameters

and obtain the fastest configuration from those parameters.

113

Chapter 8: Future Work

In this chapter, we outline the directions in which our work can be extended in

the future. In particular, we discuss three main directions - adapting MONeT’s for-

mulation for optimizing power consumption, using TACCL’s communication sketches

for other networking applications, and finally, using MAPLE’s data structures to

build a practical self-designing index structure.

8.1 Extension to MONeT’s formulation

Training deep networks on edge devices like mobile phones and micro-controllers

is becoming more and more commonplace. This is because sending the data of edge

devices to large data centers for training is tricky owing to privacy concerns, battery

drainage, and even lack of internet connections on the edge devices [91]. These edge

devices often have small memory sizes and strict power requirements.

The main objective of MONeT is to minimize computation in deep network

training while keeping memory usage below a fixed memory budget. We believe that

MONeT’s objective function can be very easily adapted to instead minimize power

consumption. By doing so, we can easily obtain a schedule of checkpointing and

operator implementations for any deep network which will fit within the memory

budget of the edge device, while having minimal power consumption.

8.2 Extension of TACCL’s communication sketches

TACCL introduced the novel abstraction of communication sketches, which

are simple inputs provided by the user to communicate intuitive information to the

synthesizer without needing much domain knowledge. We believe that the abstraction

of communication sketches can also be used for other distributed applications that

use data center networking.

114

Further, the expressivity of a communication sketch can directly help guide

a synthesizer to generate collective algorithms. It would be interesting to explore

automated search techniques, such as reinforcement learning, to generate different

communications sketches, such that we can remove any reliance on a user and can

still provide high performance for different hardware topologies and data transfer

sizes.

8.3 Extension of MAPLE’s data structures

Self-designing index structures (discussed in § 7.3) combine nodes with dif-

ferent design primitives, such as storing data in a sorted or un-sorted manner, or

performing a search using linear search, binary search, or exponential search, within

the same index structure. The design choices can then be tuned over a design con-

tinuum to adapt to workload changes. However, the search space for possible design

changes is huge, and enabling the complete design continuum along with their tran-

sitions would require immense research and development effort [68].

We envision that it is possible to build a practical self-designing learned index

structure by using MAPLE’s data structures. The key enabler behind this idea is that

it is possible to change a few parameters of the leaf node data structure in MAPLE

to obtain different performance characteristics. By allowing leaf nodes in a single

MAPLE tree to have different parameters and different data structure types, and

introducing lightweight policies for transitions, MAPLE could fit well to even more

varied different workload patterns.

115

Chapter 9: Conclusion

Today, machine learning systems have become critical for various applications

and use cases in the industry. These systems are resource-intensive and require to

efficiently utilize existing resources. However, these systems can run on extremely

variable and heterogeneous settings in production, and different solutions may be

required for different cases. Optimizing such systems would require significant exper-

tise. In this dissertation, we presented solutions that optimize various aspects of ML

systems without needing an expert.

We introduced MONeT, a framework to automatically reduce memory require-

ments for training deep networks. MONeT jointly optimizes local and graph-level op-

timizations to yield a compute- and memory-efficient checkpointing schedule. MONeT

reduces memory usage by 3× over PyTorch, with a 9−16% compute overhead. It uses

1.2-1.8× less memory than the state-of-the-art automated checkpointing framework

for the same computational cost. Our experimental results show that MONeT leads

to better memory-computation trade-offs compared to the state-of-the-art.

Next, we introduced TACCL, a topology and input-size aware collective com-

munication library for multi-node distributed machine learning training and infer-

ence. TACCL uses user-provided communication sketches to guide the synthesis of

collective algorithms. Using a three-step technique of relaxed routing, heuristic or-

dering, and contiguity and exact scheduling, TACCL generates efficient collectives for

multi-node topologies. The algorithms thus generated are up to 6.7× faster than the

state-of-the-art NCCL and result in 11%− 2.3× faster end-to-end training time.

Finally, we introduced MAPLE, a parameterized learned index that can pro-

vide high performance for a wide variety of workloads. MAPLE uses two parame-

terized learned data structures, gapped-array and fragmented-log, as components in

building the index, and outperforms existing state-of-the-art learned index by up to

116

7.5× for different datasets in a write-only workload.

9.1 Lessons Learned

In this section, we discuss some of the lessons that we can take from this

dissertation to inform future work.

Joint optimization is important. We saw that jointly optimizing memory-saving

techniques in MONeT gave the best performance results. In fact, when techniques are

used independently, they may even ”step on each other” and degrade performance.

Joint optimization of different techniques is important if they use a common input,

such as the computational graph in the case of MONeT.

Simple human inputs can go a long way. TACCL’s communication sketches

can help reduce the search space for collective algorithms significantly, thus making

the problem more tractable. While the reduction in search space varies according

to the communication sketch, just sketching the logical topology in one particular

communication sketch described previously, ndv2-sk1, is able to reduce the number

of links to make decisions about by 3×.

Data structure design and parameters are important for performance. We

saw that the Gapped Array data structure is inherently limited in its write perfor-

mance because of having to keep data in a sorted manner. Further, by tuning the

parameters of a Fragmented Log, it is possible to obtain a wide range of read and

write performance. Data structure design and parameters can significantly impact

the performance of an index structure and must be tuned well.

9.2 Closing Remarks

As deep networks grow popular and generate higher compute demands than

before, hardware accelerators are becoming more and more varied. Startups like

Cerebras [1] and Graphcore [2] are building new types of accelerators, and companies

117

like NVIDIA and Google are rapidly advancing their own accelerator technologies.

This has greatly heterogenized the space of hardware accelerators. Further, newer

interconnect technologies are being introduced in data centers. With optical circuit

switches [95], it will be possible to directly change how different hardware accelerators

are organized in a cluster. Neural network architectures in deep learning are also

constantly evolving. With neural architecture search [126] being used in many cases

to automate the generation of neural architecture, common patterns of executions

and optimizations may no longer be valid. Similarly, database applications over the

past few years have significantly changed - with new workloads coming from machine

learning, blockchains, and even new requirements due to data protection regulations

like GDPR. It is important to build a parameterized index that can adapt to all these

different workloads patterns. Optimizing machine learning systems to the fullest

in this heterogeneous environment would require expertise and a cycle of significant

experimentation every time the environment changes. This dissertation takes steps in

solving these challenges by introducing solutions that can optimize different aspects

of ML systems without using experts.

118

Appendix A: Appendix for MONeT

A.1 Detailed ablations

Figure A.1 shows a detailed plot of our ablation experiments comparing the

compute overhead of variants of MONeT across a range of memory limits. Y-axis

shows the compute overhead over PyTorch and X-axis shows the memory ratio to

a PyTorch model. All variants which are not conv-optimized are greedily post-

optimized to use the fastest convolution. We see that MONeT with no operator

optimization (NoOp) is generally slower than the other variants for all models and

memory limits. Convolution and output-activated optimizations are both impor-

tant in reducing compute overhead. MobileNet-V2 uses depthwise separable convo-

lutions, and hence does not significantly benefit from convolution-optimization. Fur-

ther, MobileNet-V2 has hardtanh operators instead of ReLU operators, for which we

have not implemented intermediate-activated backward optimization. Interemediate-

activated optimizations provide memory savings in memory-intensive models, allow-

ing models like VGG-16 to reach memory savings which are not attainable by other

optimizations. All optimizations together result in the least compute overhead for

any model or memory limit.

A.2 More details on solver time

In § 4.6, we show the time it takes for the solver to reach 5% close to the

optimal solution for Checkmate, MONeT-NoOp (MONeT with checkpointing enabled

but operator-optimization disabled), and MONeT. We also provide Table A.1 which

shows the time taken by the solver to reach 2% close to the optimal solution. We

note that it has a similar behavior as the time taken by the solver to reach 5% close

to the optimal solution. MONeT-NoOp converges to 2% close-to-optimal solution

1.3×-139× faster than Checkmate. For larger models, MONeT’s solver converges to

119

0.3 0.4 0.5 0.6 0.7 0.8

5

10

15

Memory ratio

C
o
m
p
u
te

ov
er
h
ea
d
(%

)

(a) ResNet-50 (184)

0.3 0.4 0.5 0.6 0.7 0.8

10

15

Memory ratio

(b) GoogleNet (320)

0.3 0.4 0.5 0.6 0.7 0.8

0

10

20

Memory ratio

(c) UNet (11)

0.4 0.6 0.8 1

0

20

40

Memory ratio

(d) VGG-16 (176)

0.3 0.4 0.5 0.6 0.7 0.8

5

10

Memory ratio

NoOp

Int

Out

Conv

All

(e) Mobile-V2 (272)

Figure A.1: Ablation results on ResNet-50, GoogleNet, UNet, VGG-16,
MobileNet-V2.

120

5 GB 6 GB 7 GB 8 GB 9 GB 10 GB

ResNet-50

Checkmate - 16.44 13.43 11.91 5.74 3.81

MONeT-NoOp - 2.06 1.28 0.16 0.08 0.07

MONeT - - 12.64 3.00 3.60 0.62

GoogleNet

Checkmate - 15.08 4.93 5.04 3.92 0.90

MONeT-NoOp 0.10 0.11 0.07 0.07 0.07 0.07

MONeT - 5.47 5.34 0.31 0.25 0.24

MobileNet-V2

Checkmate 2.16 2.88 1.16 0.29 0.34 0.14

MONeT-NoOp 0.43 0.37 0.02 0.02 0.10 0.09

MONeT 9.49 5.33 1.53 0.14 0.18 0.05

UNet

Checkmate 0.243 0.031 0.027 0.021 0.011 0.009

MONeT-NoOp 0.181 0.003 0.003 0.002 0.002 0.002

MONeT 5.001 0.204 0.164 0.069 0.083 0.027

VGG-16

Checkmate - - - 0.003 0.002 0.001

MONeT-NoOp - - - 0.001 0.000 0.000

MONeT - 0.004 0.006 0.004 0.003 0.003

Table A.1: Solver time (in hours) to reach 2% close to optimal solution.
MONeT-NoOp reaches a 2% close-to-optimal solution 1.3×-139× faster than Check-
mate. MONeT reaches a 2% close-to-optimal solution within a few hours in most
cases, and up to 27× faster than Checkmate for larger models.

a 2% close-to-optimal solution up to 16× faster than Checkmate. At tighter memory

limits for MobileNet-V2, the Checkmate solver reaches 2% close-to-optimal solution

faster than MONeT, but is still much slower than MONeT-NoOp.

A.3 Applicability to memory-intensive models

To further show MONeT’s applicability to memory-intensive models, we eval-

uate it on 3D-UNet [29], a fully-convolutional model for volumetric images. Fig-

ure A.2 presents the runtime-memory trade-off for MONeT on 3D-UNet. We used a

commonly used 3D-UNet implementation [118, 119] with training configuration sim-

121

0.4 0.6 0.8 1
0

2

4

6

8

10

Memory ratio
O
ve
rh
ea
d
(%

)

Figure A.2: Runtime-memory trade-off curve for 3D-UNet using MONeT.
The green point denotes the PyTorch baseline.

ilar to 3DUnet confocal boundary provided in the repository and a batch size of

22, which just fits on a 16 GB P100 GPU. MONeT reduces memory usage to 0.54×

of PyTorch, while incurring 8.86% overhead in compute time. At a memory ratio

of 0.81, MONeT incurs almost no computational overhead, because it makes use of

operator optimizations and is able to bring down the recomputation cost to zero.

122

Appendix B: Appendix for TACCL

B.1 Writing a communication sketch

Here, we show an example of the communication sketch dgx2-sk-1 used in the

evaluation to synthesize an Allgather algorithm for 2 Nvidia DGX-2 nodes (each

node has 16 GPUs and 8 NICs, every two GPUs in the node share a NIC).

The sketch annotates the NVSwitch in each node and sets a switch-hyperedge

strategy to minimize the number of links (denoted by uc-min). Further, the inter-

node sketch fixes the sender and receiver GPUs in a node for inter-node data transfers.

In our example, the odd-numbered GPUs sharing a NIC are chosen as senders and

the even-numbered GPUs are chosen as receivers for inter-node communication. The

user also annotates how the inter-node relay GPUs would split the inter-node band-

width using a beta split attribute. Since only a single GPU per NIC is chosen in our

example to perform inter-node send and similarly receive, the bandwidth is not split.

Optionally, the user can also map chunks to sender GPUs so that only mapped GPUs

are used for inter-node transfers for the chunk. The chunk to relay map attribute

defines the parameters for the mapping function. The communication sketch also

allows users to play with rotational symmetry for data routing. Given a symmetry

offset and a group size, a chunk transfer over a link is set to be equivalent to a rota-

tionally symmetric chunk over a rotationally symmetric link. In our example of the

symmetry offset attribute, using [2, 16] fixes an intra-node symmetry with an offset

of two, and using [16, 32] fixes a symmetric data transfer pattern between the two

DGX-2 nodes. Hyperparameters like input data partitioning and input size can also

be provided via the communication sketch.

Listing B.1: Example sketch dgx2-sk-1 for Allgather

{
// sketch f o r in t ra−node po l i c y
” in t ranode ske t ch ” : {

123

” s t r a t e gy ” : ” switch ” ,
” sw i t che s ” :

[[0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 , 1 1 , 1 2 , 1 3 , 1 4 , 1 5]] ,
” sw i t ch hype r edge s t r a t egy ” : [” uc−min ”]

} ,

// sketch f o r communication po l i c y between any two nodes
” in t e rnode ske t ch ” : {

” s t r a t e gy ” : ” r e l ay ” ,
” inte rnode conn ” : {”1” : [0] , ”3” : [2] , ”5” : [4] ,

”7” : [6] , ”9” : [8] , ”11” : [1 0] , ”13” : [1 2] ,
”15” : [1 4] } , // ” i ” : [j1 , j 2] imp l i e s GPU i in a
node w i l l only send data to GPU j1 and j2 o f
another node

” b e t a s p l i t ” : {”1” : 1 , ”3” : 1 , ”5” : 1 , ”7” : 1 , ”9” :
1 , ”11” : 1 , ”13” : 1 , ”15” : 1} , // ” i ” : n

imp l i e s i n t e r−node sends from a GPU i o f a node
w i l l use 1/n−th o f the in t e r−node bandwidth

” chunk to re lay map ” : [2 , 1] // maps chunk to a sender
r e l ay GPU. [r1 , r2] means chunk c w i l l be send to

another node v ia GPU (rp // r1) ∗ r1 + r2 , where rp i s
the p r e cond i t i on GPU f o r chunk c

} ,

// en f o r c e s r o t a t i o n a l symmetry .
// [(o , g) , . .] : o i s the r o t a t i o n a l o f f s e t and g i s the

group s i z e f o r the r o t a t i o n a l symmetry .
// : eg . send (c , src , r) == send ((c + o)%g , (s r c + o)%g , (

r + o)%g)
” symmetry o f f s e t s ” : [[2 , 1 6] , [1 6 , 3 2]] ,

” hyperparameters ” : {
” input chunkup ” : 2 , // Data at each GPU i s

pa r t i t i o n ed in to 2 chunks that can be
independent ly routed

” i n pu t s i z e ” : ”1M”
}

}

124

B.2 Standalone Experiments on Four Azure NDv2 Nodes

Figure B.1 shows additional algorithm bandwidth and the speedup over NCCL

graphs of TACCL for Allgather, Alltoall, and Allreduce on 4-node NDv2

cluster. We synthesize all collectives using the ndv2-sk-1 communication sketch (see

§ 5.8.2 for details), and lower them using 1 or 8 instances. We plot the best of the

two algorithms over different buffer sizes.

TACCL’s Allgather algorithms are 10% − 2.2× faster than NCCL across

all buffer sizes. For Alltoall, the ndv2-sk-1 sketch is most effective for large buffer

sizes, and helps generate algorithms that are up to 46% faster than NCCL for buffer

size greater than 1MB. TACCL Allreduce algorithms are up-to 34% faster than

NCCL for small buffer sizes and 1.9×−2.1× faster than NCCL for larger buffer sizes.

125

Figure B.1: Algorithm bandwidth comparison of TACCL against NCCL for
four Azure-NDv2 nodes. TACCL algorithms compared against NCCL (left Y-
axis) and their speedup over NCCL (right Y-axis) for Allgather, Alltoall, and
Allreduce collectives on four NDv2 nodes.

126

References

[1] URL https://www.cerebras.net/. Last Accessed August 2023.

[2] URL https://www.graphcore.ai/. Last Accessed August 2023.

[3] Cost-effective cloud edge traffic engineering with cascara. In 18th USENIX

Symposium on Networked Systems Design and Implementation (NSDI 21). USENIX

Association, April 2021. URL https://www.usenix.org/conference/nsdi21/

presentation/singh.

[4] GPUDirect RDMA, 2021. https://developer.nvidia.com/gpudirect.

[5] Megatron-LM. https://github.com/NVIDIA/Megatron-LM, 2022.

[6] Transformer-XL. https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/LanguageModeling/Transformer-

XL, 2022.

[7] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jef-

frey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard,

Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek Gor-

don Murray, Benoit Steiner, Paul A. Tucker, Vijay Vasudevan, Pete Warden,

Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensorflow: A system for

large-scale machine learning. In OSDI, 2016. URL https://www.usenix.

org/conference/osdi16/technical-sessions/presentation/abadi.

[8] Akshay Agrawal, Robin Verschueren, Steven Diamond, and Stephen Boyd. A

rewriting system for convex optimization problems. Journal of Control and

Decision, 5(1):42–60, 2018.

[9] Azure ND-series. Azure ND-series, 2021. https://docs.microsoft.com/en-

us/azure/virtual-machines/nd-series.

127

https://www.cerebras.net/
https://www.graphcore.ai/
https://www.usenix.org/conference/nsdi21/presentation/singh
https://www.usenix.org/conference/nsdi21/presentation/singh
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi

[10] Azure NDv2-series. Azure NDv2-series, 2021. https://docs.microsoft.com/en-

us/azure/virtual-machines/ndv2-series.

[11] Ron Banner, Itay Hubara, Elad Hoffer, and Daniel Soudry. Scalable methods

for 8-bit training of neural networks. In NeurIPS, 2018. URL http://papers.

nips.cc/paper/7761-scalable-methods-for-8-bit-training-of-neural-networks.

[12] Bard. Google bard. https://bard.google.com/. Accessed July 2023.

[13] Michael Barnett, Rick Littlefield, David G Payne, and Robert van de Geijn.

Global combine on mesh architectures with wormhole routing. In [1993] Pro-

ceedings Seventh International Parallel Processing Symposium, pages 156–162.

IEEE, 1993.

[14] Rudolf Bayer and Edward McCreight. Organization and maintenance of large

ordered indices. In Proceedings of the 1970 ACM SIGFIDET (Now SIGMOD)

Workshop on Data Description, Access and Control, pages 107–141, 1970.

[15] Shahid H Bokhari and Harry Berryman. Complete exchange on a circuit

switched mesh. In 1992 Proceedings Scalable High Performance Computing

Conference, pages 300–301. IEEE Computer Society, 1992.

[16] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,

Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda

Askell, et al. Language models are few-shot learners. Advances in neural

information processing systems, 33:1877–1901, 2020.

[17] Samuel Rota Bulò, Lorenzo Porzi, and Peter Kontschieder. In-place activated

batchnorm for memory-optimized training of dnns. In CVPR, 2018. URL

http://openaccess.thecvf.com/content_cvpr_2018/html/Bulo_In-Place_

Activated_BatchNorm_CVPR_2018_paper.html.

128

http://papers.nips.cc/paper/7761-scalable-methods-for-8-bit-training-of-neural-networks
http://papers.nips.cc/paper/7761-scalable-methods-for-8-bit-training-of-neural-networks
http://openaccess.thecvf.com/content_cvpr_2018/html/Bulo_In-Place_Activated_BatchNorm_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Bulo_In-Place_Activated_BatchNorm_CVPR_2018_paper.html

[18] Zixian Cai, Zhengyang Liu, Saeed Maleki, Madanlal Musuvathi, Todd Mytkow-

icz, Jacob Nelson, and Olli Saarikivi. Synthesizing optimal collective algo-

rithms. In Proceedings of the 26th ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming, pages 62–75, 2021.

[19] Zhichao Cao, Siying Dong, Sagar Vemuri, and David HC Du. Characterizing,

modeling, and benchmarking {RocksDB}{Key-Value} workloads at facebook.

In 18th USENIX Conference on File and Storage Technologies (FAST 20), pages

209–223, 2020.

[20] Ayan Chakrabarti and Benjamin Moseley. Backprop with approximate activa-

tions for memory-efficient network training. In NeurIPS, 2019.

[21] Ernie Chan, Marcel Heimlich, Avi Purkayastha, and Robert Van De Geijn.

Collective communication: theory, practice, and experience. Concurrency and

Computation: Practice and Experience, 19(13):1749–1783, 2007.

[22] chatgpt. Chatgpt. https://chat.openai.com/. Accessed July 2023.

[23] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and

Alan L. Yuille. Deeplab: Semantic image segmentation with deep convolutional

nets, atrous convolution, and fully connected crfs. IEEE TPAMI., 2018.

[24] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep

nets with sublinear memory cost. CoRR, abs/1604.06174, 2016. URL http:

//arxiv.org/abs/1604.06174.

[25] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John

Tran, Bryan Catanzaro, and Evan Shelhamer. cudnn: Efficient primitives for

deep learning. CoRR, 2014. URL http://arxiv.org/abs/1410.0759.

[26] Alvin Cheung, Armando Solar-Lezama, and Samuel Madden. Using program

synthesis for social recommendations. In Proceedings of the 21st ACM In-

ternational Conference on Information and Knowledge Management, CIKM

129

http://arxiv.org/abs/1604.06174
http://arxiv.org/abs/1604.06174
http://arxiv.org/abs/1410.0759

’12, page 1732–1736, New York, NY, USA, 2012. Association for Comput-

ing Machinery. ISBN 9781450311564. doi: 10.1145/2396761.2398507. URL

https://doi.org/10.1145/2396761.2398507.

[27] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long

sequences with sparse transformers. CoRR, 2019. URL http://arxiv.org/

abs/1904.10509.

[28] Minsik Cho, Ulrich Finkler, Mauricio Serrano, David Kung, and Hillery Hunter.

Blueconnect: Decomposing all-reduce for deep learning on heterogeneous net-

work hierarchy. IBM Journal of Research and Development, 63(6):1:1–1:11,

2019.

[29] Özgün Çiçek, Ahmed Abdulkadir, Soeren S Lienkamp, Thomas Brox, and Olaf

Ronneberger. 3D U-Net: learning dense volumetric segmentation from sparse

annotation. In MICCAI, 2016.

[30] Ronan Collobert, Koray Kavukcuoglu, and Clément Farabet. Torch7: A

matlab-like environment for machine learning. In BigLearn, NeurIPS work-

shop, 2011.

[31] Yifan Dai, Yien Xu, Aishwarya Ganesan, Ramnatthan Alagappan, Brian Kroth,

Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. From WiscKey to bour-

bon: A learned index for Log-Structured merge trees. In 14th USENIX Sym-

posium on Operating Systems Design and Implementation (OSDI 20), pages

155–171. USENIX Association, November 2020. ISBN 978-1-939133-19-9.

URL https://www.usenix.org/conference/osdi20/presentation/dai.

[32] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V Le, and

Ruslan Salakhutdinov. Transformer-xl: Attentive language models beyond a

fixed-length context. arXiv preprint arXiv:1901.02860, 2019.

130

https://doi.org/10.1145/2396761.2398507
http://arxiv.org/abs/1904.10509
http://arxiv.org/abs/1904.10509
https://www.usenix.org/conference/osdi20/presentation/dai

[33] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:

pre-training of deep bidirectional transformers for language understanding. CoRR,

abs/1810.04805, 2018. URL http://arxiv.org/abs/1810.04805.

[34] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:

Pre-training of deep bidirectional transformers for language understanding.

NAACL, 2019.

[35] Steven Diamond and Stephen Boyd. CVXPY: A Python-embedded modeling

language for convex optimization. Journal of Machine Learning Research, 17

(83):1–5, 2016.

[36] Jialin Ding, Umar Farooq Minhas, Jia Yu, Chi Wang, Jaeyoung Do, Yinan Li,

Hantian Zhang, Badrish Chandramouli, Johannes Gehrke, Donald Kossmann,

et al. Alex: an updatable adaptive learned index. In Proceedings of the

2020 ACM SIGMOD International Conference on Management of Data, pages

969–984, 2020.

[37] Jens Dittrich, Joris Nix, and Christian Schön. The next 50 years in database

indexing or: the case for automatically generated index structures. Proceedings

of the VLDB Endowment, 15(3):527–540, 2021.

[38] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Image super-

resolution using deep convolutional networks. IEEE TPAMI., 2016.

[39] Siying Dong, Andrew Kryczka, Yanqin Jin, and Michael Stumm. Evolution

of development priorities in key-value stores serving large-scale applications:

The {rocksdb} experience. In 19th USENIX Conference on File and Storage

Technologies (FAST 21), pages 33–49, 2021.

[40] Jack Dongarra et al. MPI: A message-passing interface standard version 3.0.

High Performance Computing Center Stuttgart (HLRS), 2(5):32, 2013.

131

http://arxiv.org/abs/1810.04805

[41] Economic value of LLM inference speedup. Economic value of LLM inference

speedup. https://twitter.com/DrJimFan/status/1666132981839437825, 2023.

Last Accessed August 2023.

[42] Kevin Ellis, Daniel Ritchie, Armando Solar-Lezama, and Josh Tenenbaum.

Learning to infer graphics programs from hand-drawn images. Advances in

neural information processing systems, 31, 2018.

[43] Emmanuel Esposito, Thomas Mueller Graf, and Sebastiano Vigna. Recsplit:

Minimal perfect hashing via recursive splitting. In 2020 Proceedings of the

Twenty-Second Workshop on Algorithm Engineering and Experiments (ALENEX),

pages 175–185. SIAM, 2020.

[44] Ohad Eytan, Danny Harnik, Effi Ofer, Roy Friedman, and Ronen Kat. It’s

time to revisit {LRU} vs.{FIFO}. In 12th USENIX Workshop on Hot Topics

in Storage and File Systems (HotStorage 20), 2020.

[45] William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scal-

ing to trillion parameter models with simple and efficient sparsity. CoRR,

abs/2101.03961, 2021. URL https://arxiv.org/abs/2101.03961.

[46] Paolo Ferragina and Giorgio Vinciguerra. The pgm-index: a fully-dynamic

compressed learned index with provable worst-case bounds. Proceedings of the

VLDB Endowment, 13(8):1162–1175, 2020.

[47] Alex Galakatos, Michael Markovitch, Carsten Binnig, Rodrigo Fonseca, and

Tim Kraska. Fiting-tree: A data-aware index structure. In Proceedings of the

2019 international conference on management of data, pages 1189–1206, 2019.

[48] Nadeen Gebara, Manya Ghobadi, and Paolo Costa. In-network aggregation

for shared machine learning clusters. In A. Smola, A. Dimakis, and I. Sto-

ica, editors, Proceedings of Machine Learning and Systems, volume 3, pages

132

https://arxiv.org/abs/2101.03961

829–844, 2021. URL https://proceedings.mlsys.org/paper/2021/file/

eae27d77ca20db309e056e3d2dcd7d69-Paper.pdf.

[49] Aidan N. Gomez, Mengye Ren, Raquel Urtasun, and Roger B. Grosse. The

reversible residual network: Backpropagation without storing activations. In

NeurIPS, 2017. URL http://papers.nips.cc/paper/6816-the-reversible-residual-network-backpropagation-without-storing-activations.

[50] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2022. URL

https://www.gurobi.com.

[51] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual

learning for image recognition. In CVPR, 2016.

[52] Roger W. Hockney. The communication challenge for mpp: Intel paragon and

meiko cs-2. Parallel Computing, 20(3):389–398, 1994. ISSN 0167-8191. doi:

https://doi.org/10.1016/S0167-8191(06)80021-9. URL https://www.sciencedirect.

com/science/article/pii/S0167819106800219.

[53] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay Gill, Mo-

han Nanduri, and Roger Wattenhofer. Achieving high utilization with software-

driven wan. SIGCOMM Comput. Commun. Rev., 43(4):15–26, August 2013.

ISSN 0146-4833.

[54] Stratos Idreos, Kostas Zoumpatianos, Manos Athanassoulis, Niv Dayan, Brian

Hentschel, Michael S Kester, Demi Guo, Lukas M Maas, Wilson Qin, Abdul

Wasay, et al. The periodic table of data structures. IEEE Data Eng. Bull.,

2018.

[55] Stratos Idreos, Kostas Zoumpatianos, Brian Hentschel, Michael S Kester, and

Demi Guo. The data calculator: Data structure design and cost synthesis from

first principles and learned cost models. In Proceedings of the 2018 Interna-

tional Conference on Management of Data, pages 535–550, 2018.

133

https://proceedings.mlsys.org/paper/2021/file/eae27d77ca20db309e056e3d2dcd7d69-Paper.pdf
https://proceedings.mlsys.org/paper/2021/file/eae27d77ca20db309e056e3d2dcd7d69-Paper.pdf
http://papers.nips.cc/paper/6816-the-reversible-residual-network-backpropagation-without-storing-activations
https://www.gurobi.com
https://www.sciencedirect.com/science/article/pii/S0167819106800219
https://www.sciencedirect.com/science/article/pii/S0167819106800219

[56] Stratos Idreos, Niv Dayan, Wilson Qin, Mali Akmanalp, Sophie Hilgard, An-

drew Ross, James Lennon, Varun Jain, Harshita Gupta, David Li, et al. Design

continuums and the path toward self-designing key-value stores that know and

learn. In CIDR, 2019.

[57] Stratos Idreos, Kostas Zoumpatianos, Subarna Chatterjee, Wilson Qin, Abdul

Wasay, Brian Hentschel, Mike Kester, Niv Dayan, Demi Guo, Minseo Kang,

et al. Learning data structure alchemy. Bulletin of the IEEE Computer

Society Technical Committee on Data Engineering, 42(2), 2019.

[58] Animesh Jain, Amar Phanishayee, Jason Mars, Lingjia Tang, and Gennady

Pekhimenko. Gist: Efficient data encoding for deep neural network training.

In ISCA, 2018. URL https://doi.org/10.1109/ISCA.2018.00070.

[59] Paras Jain, Ajay Jain, Aniruddha Nrusimha, Amir Gholami, Pieter Abbeel,

Kurt Keutzer, Ion Stoica, and Joseph E. Gonzalez. Checkmate: Breaking

the memory wall with optimal tensor rematerialization. CoRR, 2019. URL

http://arxiv.org/abs/1910.02653.

[60] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski,

Arjun Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, Jon

Zolla, Urs Hölzle, Stephen Stuart, and Amin Vahdat. B4: Experience with a

globally-deployed software defined wan. SIGCOMM Comput. Commun. Rev.,

43(4):3–14, August 2013. ISSN 0146-4833.

[61] Jinseong Jeon, Xiaokang Qiu, Jeffrey S Foster, and Armando Solar-Lezama.

Jsketch: sketching for java. In Proceedings of the 2015 10th Joint Meeting on

Foundations of Software Engineering, pages 934–937, 2015.

[62] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,

Ross B. Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional

architecture for fast feature embedding. In ACM MM, 2014. doi: 10.1145/

2647868.2654889. URL https://doi.org/10.1145/2647868.2654889.

134

https://doi.org/10.1109/ISCA.2018.00070
http://arxiv.org/abs/1910.02653
https://doi.org/10.1145/2647868.2654889

[63] Srikanth Kandula, Ishai Menache, Roy Schwartz, and Spandana Raj Babbula.

Calendaring for wide area networks. In SIGCOMM’14.

[64] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Accurate image super-

resolution using very deep convolutional networks. In CVPR, 2016.

[65] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-

tion. arXiv preprint arXiv:1412.6980, 2014.

[66] Andreas Kipf, Ryan Marcus, Alexander van Renen, Mihail Stoian, Alfons Kem-

per, Tim Kraska, and Thomas Neumann. Sosd: A benchmark for learned

indexes. arXiv preprint arXiv:1911.13014, 2019.

[67] Andreas Kipf, Ryan Marcus, Alexander van Renen, Mihail Stoian, Alfons Kem-

per, Tim Kraska, and Thomas Neumann. RadixSpline: a single-pass learned

index. In Proceedings of the Third International Workshop on Exploiting Ar-

tificial Intelligence Techniques for Data Management, aiDM@SIGMOD 2020,

Portland, Oregon, USA, June 19, 2020, pages 5:1–5:5, 2020. doi: 10.1145/

3401071.3401659. URL https://doi.org/10.1145/3401071.3401659.

[68] Tim Kraska. Towards instance-optimized data systems. Proceedings of the

VLDB Endowment, 14(12), 2021.

[69] Tim Kraska, Alex Beutel, Ed H Chi, Jeffrey Dean, and Neoklis Polyzotis. The

case for learned index structures. In Proceedings of the 2018 international

conference on management of data, pages 489–504, 2018.

[70] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification

with deep convolutional neural networks. In NeurIPS, 2012.

[71] ChonLam Lao, Yanfang Le, Kshiteej Mahajan, Yixi Chen, Wenfei Wu, Aditya

Akella, and Michael Swift. ATP: In-network aggregation for multi-tenant learn-

ing. In 18th USENIX Symposium on Networked Systems Design and Implemen-

135

https://doi.org/10.1145/3401071.3401659

tation (NSDI 21), pages 741–761. USENIX Association, April 2021. ISBN 978-

1-939133-21-2. URL https://www.usenix.org/conference/nsdi21/presentation/

lao.

[72] Frank Thomson Leighton, Bruce M Maggs, and Satish B Rao. Packet routing

and job-shop scheduling in o (congestion+ dilation) steps. Combinatorica, 14

(2):167–186, 1994.

[73] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat,

Yanping Huang, Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard:

Scaling giant models with conditional computation and automatic sharding.

CoRR, abs/2006.16668, 2020. URL https://arxiv.org/abs/2006.16668.

[74] Antoine Limasset, Guillaume Rizk, Rayan Chikhi, and Pierre Peterlongo. Fast

and scalable minimal perfect hashing for massive key sets. arXiv preprint

arXiv:1702.03154, 2017.

[75] Liang Luo, Jacob Nelson, Luis Ceze, Amar Phanishayee, and Arvind Krishna-

murthy. Parameter hub: A rack-scale parameter server for distributed deep

neural network training. In Proceedings of the ACM Symposium on Cloud

Computing, SoCC ’18, page 41–54, New York, NY, USA, 2018. Association for

Computing Machinery. ISBN 9781450360111. doi: 10.1145/3267809.3267840.

URL https://doi.org/10.1145/3267809.3267840.

[76] Liang Luo, Peter West, Jacob Nelson, Arvind Krishnamurthy, and Luis Ceze.

Plink: Discovering and exploiting locality for accelerated distributed training

on the public cloud. In Proceedings of Machine Learning and Systems 2020,

pages 82–97. 2020.

[77] Ryan Marcus, Andreas Kipf, Alexander van Renen, Mihail Stoian, Sanchit

Misra, Alfons Kemper, Thomas Neumann, and Tim Kraska. Benchmarking

learned indexes. arXiv preprint arXiv:2006.12804, 2020.

136

https://www.usenix.org/conference/nsdi21/presentation/lao
https://www.usenix.org/conference/nsdi21/presentation/lao
https://arxiv.org/abs/2006.16668
https://doi.org/10.1145/3267809.3267840

[78] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory F. Diamos, Erich

Elsen, David Garćıa, Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh

Venkatesh, and Hao Wu. Mixed precision training. In ICLR, 2018. URL

https://openreview.net/forum?id=r1gs9JgRZ.

[79] Microsoft SCCL. Microsoft sccl, 2021. https://github.com/microsoft/sccl.

[80] Dheevatsa Mudigere, Yuchen Hao, Jianyu Huang, Zhihao Jia, Andrew Tul-

loch, Srinivas Sridharan, Xing Liu, Mustafa Ozdal, Jade Nie, Jongsoo Park,

et al. Software-hardware co-design for fast and scalable training of deep learn-

ing recommendation models. In Proceedings of the 49th Annual International

Symposium on Computer Architecture, pages 993–1011, 2022.

[81] NCCL Tests. Nccl tests, 2021. https://github.com/NVIDIA/nccl-tests.

[82] NCCL Tree Algorithm. NCCL Tree Algorithm, 2019. https://developer.nvidia.com/blog/massively-

scale-deep-learning-training-nccl-2-4.

[83] Nvidia DGX Systems. Nvidia DGX Systems, 2021. https://www.nvidia.com/en-

us/data-center/dgx-systems/.

[84] Nvidia Infiniband. Nvidia InfiniBand, 2021. https://www.nvidia.com/en-

us/networking/infiniband-adapters/.

[85] NVIDIA NCCL. Nvidia nccl, 2021. https://github.com/nvidia/nccl.

[86] Nvidia NVLink. Nvidia NVLink and NVSwitch, 2021. https://www.nvidia.com/en-

us/data-center/nvlink/.

[87] Nvidia NVSWITCH. NVIDIA NVSWITCH The World’s Highest-Bandwidth

On-Node Switch , 2021. https://images.nvidia.com/content/pdf/nvswitch-

technical-overview.pdf.

[88] OpenStreetMap contributors. Planet dump retrieved from https://planet.osm.org

. https://www.openstreetmap.org, 2017.

137

https://openreview.net/forum?id=r1gs9JgRZ
 https://www.openstreetmap.org

[89] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. The

log-structured merge-tree (lsm-tree). Acta Informatica, 33:351–385, 1996.

[90] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-

gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Al-

ban Desmaison, Andreas Köpf, Edward Yang, Zachary DeVito, Martin Raison,

Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai,

and Soumith Chintala. Pytorch: An imperative style, high-performance deep

learning library. In NeurIPS, 2019. URL http://papers.nips.cc/paper/

9015-pytorch-an-imperative-style-high-performance-deep-learning-library.

[91] Shishir G Patil, Paras Jain, Prabal Dutta, Ion Stoica, and Joseph Gonzalez.

Poet: Training neural networks on tiny devices with integrated rematerializa-

tion and paging. In International Conference on Machine Learning, pages

17573–17583. PMLR, 2022.

[92] Giulio Ermanno Pibiri and Roberto Trani. Pthash: Revisiting fch minimal

perfect hashing. In Proceedings of the 44th International ACM SIGIR Confer-

ence on Research and Development in Information Retrieval, pages 1339–1348,

2021.

[93] Jelena Pješivac-Grbović, Thara Angskun, George Bosilca, Graham E Fagg,

Edgar Gabriel, and Jack J Dongarra. Performance analysis of mpi collective

operations. Cluster Computing, 10(2):127–143, 2007.

[94] Geoff Pleiss, Danlu Chen, Gao Huang, Tongcheng Li, Laurens van der Maaten,

and Kilian Q. Weinberger. Memory-efficient implementation of densenets.

CoRR, 2017. URL http://arxiv.org/abs/1707.06990.

[95] Arslan Sajid Raja, Sophie Lange, Maxim Karpov, Kai Shi, Xin Fu, Raphael

Behrendt, Daniel Cletheroe, Anton Lukashchuk, Istvan Haller, Fotini Karinou,

et al. Ultrafast optical circuit switching for data centers using integrated soliton

microcombs. Nature communications, 12(1):5867, 2021.

138

http://papers.nips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library
http://papers.nips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library
http://arxiv.org/abs/1707.06990

[96] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional

networks for biomedical image segmentation. In MICCAI, 2015. doi: 10.1007/

978-3-319-24574-4\ 28. URL https://doi.org/10.1007/978-3-319-24574-4_

28.

[97] Sebastian Ruder. An overview of gradient descent optimization algorithms.

arXiv preprint arXiv:1609.04747, 2016.

[98] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-

Chieh Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In

Proceedings of the IEEE conference on computer vision and pattern recognition,

pages 4510–4520, 2018.

[99] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nelson, Panos Kalnis, Changhoon

Kim, Arvind Krishnamurthy, Masoud Moshref, Dan Ports, and Peter Richtárik.

Scaling distributed machine learning with {In-Network} aggregation. In 18th

USENIX Symposium on Networked Systems Design and Implementation (NSDI

21), pages 785–808, 2021.

[100] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan,

Laurent Sifre, Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis,

Thore Graepel, et al. Mastering atari, go, chess and shogi by planning with a

learned model. Nature, 588(7839):604–609, 2020.

[101] David S Scott. Efficient all-to-all communication patterns in hypercube and

mesh topologies. In The Sixth Distributed Memory Computing Conference,

1991. Proceedings, pages 398–399. IEEE Computer Society, 1991.

[102] Alexander Sergeev and Mike Del Balso. Horovod: fast and easy distributed

deep learning in tensorflow, 2018.

139

https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-24574-4_28

[103] Aashaka Shah, Chao-Yuan Wu, Jayashree Mohan, Vijay Chidambaram, and

Philipp Krähenbühl. Memory optimization for deep networks. arXiv preprint

arXiv:2010.14501, 2020.

[104] Aashaka Shah, Vijay Chidambaram, Meghan Cowan, Saeed Maleki, Madan

Musuvathi, Todd Mytkowicz, Jacob Nelson, and Olli Saarikivi. {TACCL}:

Guiding collective algorithm synthesis using communication sketches. In 20th

USENIX Symposium on Networked Systems Design and Implementation (NSDI

23), pages 593–612, 2023.

[105] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared

Casper, and Bryan Catanzaro. Megatron-lm: Training multi-billion parameter

language models using model parallelism. CoRR, abs/1909.08053, 2019. URL

http://arxiv.org/abs/1909.08053.

[106] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja

Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian

Bolton, et al. Mastering the game of go without human knowledge. nature,

550(7676):354–359, 2017.

[107] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for

large-scale image recognition. In ICLR, 2015. URL http://arxiv.org/abs/

1409.1556.

[108] Rachee Singh, Manya Ghobadi, Klaus-Tycho Foerster, Mark Filer, and Phillipa

Gill. Radwan: Rate adaptive wide area network. In Proceedings of the 2018

Conference of the ACM Special Interest Group on Data Communication, SIG-

COMM ’18, page 547–560, New York, NY, USA, 2018. Association for Comput-

ing Machinery. ISBN 9781450355674. doi: 10.1145/3230543.3230570. URL

https://doi.org/10.1145/3230543.3230570.

140

http://arxiv.org/abs/1909.08053
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
https://doi.org/10.1145/3230543.3230570

[109] Rachee Singh, Nikolaj Bjorner, Sharon Shoham, Yawei Yin, John Arnold, and

Jamie Gaudette. Cost-effective capacity provisioning in wide area networks

with shoofly. In Proceedings of the 2021 ACM SIGCOMM 2021 Conference,

SIGCOMM ’21, page 534–546, New York, NY, USA, 2021. Association for

Computing Machinery. ISBN 9781450383837. doi: 10.1145/3452296.3472895.

URL https://doi.org/10.1145/3452296.3472895.

[110] Armando Solar-Lezama. Program Synthesis by Sketching. PhD thesis, USA,

2008. AAI3353225.

[111] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia, and Vi-

jay Saraswat. Combinatorial sketching for finite programs. In Proceedings

of the 12th International Conference on Architectural Support for Programming

Languages and Operating Systems, ASPLOS XII, page 404–415, New York, NY,

USA, 2006. Association for Computing Machinery. ISBN 1595934510. doi: 10.

1145/1168857.1168907. URL https://doi.org/10.1145/1168857.1168907.

[112] Armando Solar-Lezama, Gilad Arnold, Liviu Tancau, Rastislav Bodik, Vijay

Saraswat, and Sanjit Seshia. Sketching stencils. In Proceedings of the 28th

ACM SIGPLAN Conference on Programming Language Design and Implemen-

tation, PLDI ’07, page 167–178, New York, NY, USA, 2007. Association for

Computing Machinery. ISBN 9781595936332. doi: 10.1145/1250734.1250754.

URL https://doi.org/10.1145/1250734.1250754.

[113] Aravind Srinivasan and Chung-Piaw Teo. A constant-factor approximation

algorithm for packet routing, and balancing local vs. global criteria. In Pro-

ceedings of the twenty-ninth annual ACM symposium on Theory of computing,

pages 636–643, 1997.

[114] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir

Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Go-

141

https://doi.org/10.1145/3452296.3472895
https://doi.org/10.1145/1168857.1168907
https://doi.org/10.1145/1250734.1250754

ing deeper with convolutions. In Proceedings of the IEEE conference on com-

puter vision and pattern recognition, pages 1–9, 2015.

[115] Rajeev Thakur, Rolf Rabenseifner, and William Gropp. Optimization of col-

lective communication operations in mpich. The International Journal of High

Performance Computing Applications, 19(1):49–66, 2005.

[116] Guanhua Wang, Shivaram Venkataraman, Amar Phanishayee, Nikhil Devanur,

Jorgen Thelin, and Ion Stoica. Blink: Fast and generic collectives for dis-

tributed ml. In I. Dhillon, D. Papailiopoulos, and V. Sze, editors, Proceedings of

Machine Learning and Systems, volume 2, pages 172–186, 2020. URL https://

proceedings.mlsys.org/paper/2020/file/43ec517d68b6edd3015b3edc9a11367b-Paper.

pdf.

[117] Shmuel Winograd. Arithmetic complexity of computations. Siam, 1980.

[118] AdrianWolny. PyTorch 3D-UNet. https://github.com/wolny/pytorch-3dunet,

2019.

[119] AdrianWolny, Lorenzo Cerrone, Athul Vijayan, Rachele Tofanelli, Amaya Vilches

Barro, Marion Louveaux, ChristianWenzl, Susanne Steigleder, Constantin Pape,

Alberto Bailoni, Salva Duran-Nebreda, George Bassel, Jan U. Lohmann, Fred A.

Hamprecht, Kay Schneitz, Alexis Maizel, and Anna Kreshuk. Accurate and

versatile 3d segmentation of plant tissues at cellular resolution. bioRxiv, 2020.

[120] Chaichon Wongkham, Baotong Lu, Chris Liu, Zhicong Zhong, Eric Lo, and

Tianzheng Wang. Are updatable learned indexes ready? arXiv preprint

arXiv:2207.02900, 2022.

[121] Jiacheng Wu, Yong Zhang, Shimin Chen, Jin Wang, Yu Chen, and Chunx-

iao Xing. Updatable learned index with precise positions. arXiv preprint

arXiv:2104.05520, 2021.

142

https://proceedings.mlsys.org/paper/2020/file/43ec517d68b6edd3015b3edc9a11367b-Paper.pdf
https://proceedings.mlsys.org/paper/2020/file/43ec517d68b6edd3015b3edc9a11367b-Paper.pdf
https://proceedings.mlsys.org/paper/2020/file/43ec517d68b6edd3015b3edc9a11367b-Paper.pdf
https://github.com/wolny/pytorch-3dunet

[122] Ningning Xie, Tamara Norman, Dominik Grewe, and Dimitrios Vytiniotis.

Synthesizing optimal parallelism placement and reduction strategies on hier-

archical systems for deep learning. CoRR, abs/2110.10548, 2021. URL

https://arxiv.org/abs/2110.10548.

[123] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov,

and Quoc V Le. Xlnet: Generalized autoregressive pretraining for language

understanding. In NeurIPS, 2019.

[124] Zhen Zhang, Chaokun Chang, Haibin Lin, Yida Wang, Raman Arora, and Xin

Jin. Is network the bottleneck of distributed training? In Proceedings of the

Workshop on Network Meets AI & ML, pages 8–13, 2020.

[125] Chenxingyu Zhao, Tapan Chugh, Jaehong Min, Ming Liu, and Arvind Krish-

namurthy. Dremel: Adaptive configuration tuning of rocksdb kv-store. Pro-

ceedings of the ACM on Measurement and Analysis of Computing Systems, 6

(2):1–30, 2022.

[126] Barret Zoph and Quoc V Le. Neural architecture search with reinforcement

learning. arXiv preprint arXiv:1611.01578, 2016.

143

https://arxiv.org/abs/2110.10548

	List of Figures
	List of Tables
	Chapter 1: Introduction
	Memory Consumption in Deep Learning
	Network Communication in Distributed ML
	Data Structure Configurations in Learned Indexes
	Outline

	Chapter 2: Background
	Deep networks and deep learning training
	Common deep network operators
	Distributed deep learning
	Characteristics of network communication in distributed ML
	Data structures in database indexes
	Learned Indexes and ALEX

	Chapter 3: Motivation
	Memory requirement in deep network training
	Existing memory saving techniques
	Hardware heterogeneity in distributed deep learning
	Existing network communication libraries
	Workload variety in database indexes
	Performance of existing learned index structures
	Summary

	Chapter 4: MONeT: Memory Optimization for Deep Networks
	Goals
	Design
	Theoretical Analysis of Peak Memory Consumption
	MONeT Formulation

	Detailed constraints
	In-place constraints
	Expanded backward pass memory constraints
	Complete memory constraints
	Constraint Linearization

	Implementation
	Discussion
	Adding operator optimization in other checkpointing frameworks
	Applicability of MONeT to inference workloads

	Evaluation
	Experimental Setup
	Baseline Implementations
	Constraining memory usage
	Computation overhead
	Ablation experiments
	Solver time
	ILP statistics in MONeT's formulation

	Summary

	Chapter 5: TACCL: Guiding Collective Algorithm Synthesis using Communication Sketches
	Goals
	TACCL components
	Physical Topologies of GPU systems
	Design
	Communication Sketches
	Synthesizer

	Synthesizer Formulation
	Routing
	Ordering Heuristics
	Contiguity and Exact Scheduling

	Backend
	TACCL runtime
	Lowering to TACCL runtime

	Discussion
	Evaluation
	Experimental Setup
	Standalone Experiments
	Impact of Varying Synthesizer Inputs
	End-to-End Training.
	Synthesis Time

	Summary

	Chapter 6: MAPLE: Parameterized Learned Index
	Goals
	Data structures for learned index
	Gapped Array
	Fragmented Log
	Minimal Perfect Hash Functions (MPHF)

	Design
	Overview
	Selecting MAPLE parameters
	Throughput Prediction Model

	Discussion
	Evaluation
	Experimental Setup
	Datasets and workloads
	Throughput comparison
	Memory usage

	Summary

	Chapter 7: Related Work
	Memory usage bottlenecks in deep network training
	Network communication overhead in distributed deep learning
	Workload-adaptable Index Structures

	Chapter 8: Future Work
	Extension to MONeT's formulation
	Extension of TACCL's communication sketches
	Extension of MAPLE's data structures

	Chapter 9: Conclusion
	Lessons Learned
	Closing Remarks

	Appendix A: Appendix for MONeT
	Detailed ablations
	More details on solver time
	Applicability to memory-intensive models

	Appendix B: Appendix for TACCL
	Writing a communication sketch
	Standalone Experiments on Four Azure NDv2 Nodes

	References

